
Supporting evolution of automated Material Flow
Systems as part of CPPS by using

coupled meta models

Birgit Vogel-Heuser1, Marco Konersmann2, Thomas Aicher1, Juliane Fischer1, Felix Ocker1, Michael Goedicke2

1Technical University of Munich
Institute of Automation and Information Systems

85748 Garching near Munich, Germany
{vogel-heuser, juliane.fischer, felix.ocker}@tum.de;

aicher@ais.mw.tum.de

2University of Duisburg-Essen
paluno – The Ruhr Institute for Software Technolgy

45127 Essen, Germany
{michael.goedicke, marco.konersmann}@paluno.uni-due.de

Abstract—The software of automated Material Flow Systems

(aMFS) is usually tightly coupled to the system in which it is em-
bedded. Reuse of control software of aMFS is commonly achieved
through copying, pasting, and modifying existing control code
from a similar system. When a module of an aMFS is updated in
production, e.g. to resolve issues, the program code and hardware
components are changed. The change is usually documented infor-
mally or resides only in the mind of the automation engineer.
When new hardware is added to a module, the control software
often has to be changed in many different parts, or a new control
function has to be developed, which wraps the existing code. This
way of handling the development and evolution of aMFSs is error-
prone and reduces the software quality. A modular, model-based
software architecture for aMFS can reduce the error-proneness
and improve the software quality. In this paper we propose a
model-based development method for aMFS. It is used to create a
modular software architecture that describes composable mod-
ules. The models, their meta models, and the program code therein
are coupled with each other via mappings and consistency rules,
so that the consistency can be validated. Bidirectional transfor-
mations between the program code and models can be created. As
part of the documentation, changes in the program code and
model must be synchronized.

Keywords— methodologies and tools; automation systems; flex-
ible manufacturing systems; software evolution; CPPS; intralogis-
tics

I. INTRODUCTION

Automated Material Flow Systems (aMFS) are a crucial and
standard part of Cyber Physical Production Systems (CPPS).
They connect different machines or plant parts providing the
transport of material from one to the other. Considering the cur-
rent (re-)engineering of aMFS, the initial (re-)engineering
stage, i.e. drawing up the material flow plan of the system, gen-
erally serves as requirements document for other engineering
disciplines, e.g. software engineering. The applied electri-
cal/mechanical components of an aMFS as well as the assembly
of these components with one another must be identified man-
ually from the material flow plan and transferred into the con-
trol software.

After that, reuse of control software is commonly achieved
through copying, pasting and modifying existing control code

from a similar aMFS. Due to the static structure and high vari-
ability of today’s control software of aMFS, the modification of
existing control code is error-prone and requires a great deal of
effort to develop. More specifically, the static structure prevents
commonly required adaptions of the control software for a me-
chanical and electrical component, e.g. adding a further light
barrier, or exchanging a mechanical and electrical component
for one possessing a higher version number, e.g. a barcode scan-
ner with a Quick Response (QR) scanner. Often, the control
software has to be modified in different parts of the monolithic
structure or a new and individual control function has to be pro-
grammed to wrap the existing control code, i.e. to adapt the in-
terfaces and/or behavior. Both approaches are error-prone and
reduce the software quality.

Reusability can be improved by minimizing the static struc-
ture of an aMFS and development effort and error-proneness are
reduced by setting up a modular software architecture [1, 2]. By
using a modular software architecture for each electrical/me-
chanical component of an aMFS, a (pre)defined software com-
ponent–i.e. an automated material flow module (aMFM)–exists,
which can execute specific tasks and offer the possibility to in-
teract with neighboring modules. This way, the modular struc-
ture of electrical/mechanical components in aMFS can be trans-
ferred into software engineering in order to improve reusability
and software quality and reduce effort and error-proneness.

Considering different methodologies in software develop-
ment of automated Production Systems (aPS), model-driven en-
gineering (MDE) is frequently recommended in research and in-
dustry due to advantages regarding engineering and commis-
sioning time [3, 4, 5]. Based on an MDE approach, domain-spe-
cific meta models, e.g. for aMFS, enabling the encapsulated de-
scription of logistics modules and their related information as
well as the composition of multiple modules to a system could
be developed, which is a widespread approach in research for
aPS [5]. To apply the model-based description of the systems,
an automated control code generation is used.

For supporting the efficient reuse and evolution, we define
four requirements that have to be fulfilled by an MDE approach
for aMFS: (R1) An aMFS must be built by instantiating encap-
sulated modules. Types of modules must be described in a ho-
listic way, so that they can be instantiated and reused. (R2) It
must be possible to build systems out of arbitrarily composable

modules. I.e. a module can either be implemented by specific
hardware and software (basic modules), or by instantiating and
interconnecting other modules (composed modules). (R3) Con-
sistency must be preserved between models of interconnected
modules. These models have overlapping semantics. E.g. the
output of one module is the input of another module. It must be
possible to formally validate or (re)create this consistency. (R4)
Consistency must be ensured between models of the aMFMs
and the implemented program code. While models describe the
way the system is working, the program code implements this
specification. When the program code or the model is changed,
changes must be propagated to the other artifact, to support (ad-
hoc) evolution.

The main contribution of this paper is to highlight the ben-
efits of a more modular and meta model-based approach com-
pared to classical MDE approaches, to ease software evolution
of aMFS as a crucial part of any CPPS.

The remaining paper is structured as follows: after the state
of the art in intralogistics and virtual models (Section II) a real
industrial use case is introduced, which requires evolution of
existing automation software (Section III). The evolution pro-
cess is performed with a current, model-based approach as de-
scribed in Section IV. This approach fails to fulfill all require-
ments stated above. In Section V the generic approach is pre-
sented, which defines composable, model-based modules. The
approach preserves the consistency between the models, and
between models and the program code with bidirectional rules.
Section VI describes how the approach is used for development
and evolution of aMFSs, and how it relates to the requirements
stated above, before the paper concludes and gives an outlook
on future work in Section VII.

II. STATE OF THE ART IN INTRALOGISTICS AND VIRTUAL

MODELS

In the following, the state of the art in system development
for intralogistics in general is presented and, subsequently, cur-
rent model-based approaches for aMFSs are introduced. The
section concludes with an overview of current approaches for
virtual modeling, which is used in the presented approach.

A. Trends in Logistics

Today’s aMFSs are static and long-living systems, which are
currently mainly controlled by a programmable logic controller
(PLC) programmed in accordance to the IEC 61131-3 standard.
Thus, the evolution of an aMFS requires a re-engineering of the
PLC control program, which is a time-consuming task as a
change in the control program usually entails complex software
tests [6]. Ten Hompel states that the supply chain will obviously
undergo an organizational change and the way forward to the
introduction of Internet of Things or Cyber-Physical Systems in
the control of aMFS has been marked out due to Industrie 4.0
[7, 8]. Therefore, seven characteristic and interrelated features
of Industrie 4.0 can be highlighted, i.e. digitalization, autono-
mization, transparency, mobility, modularization, network-col-
laboration and socialization. Furthermore, related technologies
and concepts are validated to determine their contribution to the
future development of the industrial (r)evolution. For instance,
Pfohl et al. [9] propose a theoretical framework to evaluate key
technologies and concepts with respect to their impact on the

supply chain. The impact of Industrie 4.0 on the control strate-
gies of supply chains, e.g. central, hierarchical/distributed or
decentralized, is not addressed.

B. Model-Based Engineering of Automated Material Flow
Systems

Ten Hompel and his group present different approaches of
distributed control strategies [10-14]. They developed and im-
plemented a decentralized control system based on embedded
technology and Internet standards using autonomous software
modules to control the aMFS. To improve the flexibility of the
system, the control of the logistics functions is separated from
the control of the hardware [10]. The transformation of this ap-
proach for centralized control strategies is not considered and
still an open research question. For the implementation of a dis-
tributed system, Libert [13] presents a multi agent system.
Thus, the author suggests that the flexibility of the control sys-
tem can be improved. For the development of the multi agent
system, the Java Agent Development Framework (JADE) is
used, which is not compliant with IEC 61131-3. Another ap-
proach from Libert et al. [15] presents an ontology-based com-
munication model for distributed material flow control systems.
The approach is also based on software agents that represent
several devices relevant to the Internet of Things. The authors
focus on the development of a communication environment for
decentralized software agents. Libert et al. describe several Do-
main Ontology Description Diagrams (DODD) based on UML,
e.g. Function ontology, Transport ontology or Workflow ontol-
ogy. Additionally, the authors introduce a communication on-
tology model for distributed aMFS based on software agents.
This contribution focuses on description of the architecture of
the approach. Kipouridis et al. [16] present an approach for a
cloud-based platform which enables collaborative development
and visualization of decentralized aMFS. The platform is being
developed in the context of the research project Collaborative
design of Decentralized aMFS (KoDeMat). For the control, a
distributed multi agent system is used. However, a model-based
approach of developing the multi agent system is not addressed.

Boschian et al. [17] present an integrated system that can be
applied to manage intermodal transportation networks at oper-
ational and tactical levels. The approach can be divided into two
core modules: the intermodal transportation networks reference
module and the simulation module. The paper proposes a mod-
eling approach describing the structure and behavior of inter-
modal transportation networks. The presented modeling proce-
dure is a top-down technique based on UML. The knowledge
base of the integrated system is defined by a reference model
that foresees the system behavior and provides the data for man-
agement strategies.

Black and Vyatkin [18] describe an agent-based design of a
baggage handling system applying the IEC 61499 standard.
Based on function block descriptions, the decentralized system
is able to run immediately without programming. However, the
approach does not provide a hierarchical generalized meta
model architecture which can be used to describe different mod-
ules in the field of aMFS.

To assure availability of automation systems Priego et al.
[19] present a model-based design approach that supports the

definition of reconfiguration requirements of IEC 61131-3 soft-
ware programs. A meta model is defined and used to automati-
cally extend the PLC control code with the elements needed to
enable reconfiguration at run time. However, the evolution of
the systems is not targeted in the approach.

Aicher et al. [20] introduce a model-based approach for au-
tomatically analyzing and adapting the interfaces of aMFMs to
enable interaction between neighboring modules while ensur-
ing downward compatibility by the help of wrappers. Within
the meta model, aMFMs are grouped into four levels following
the System Architecture for Intralogistics [21]: The top level is
the conveying area (an entire manufacturing hall), which is sep-
arated into conveying segments (such as the demonstrator plant
depicted in Fig. 1). These in turn are made up of conveying
groups (see Fig. 1, “merging” and “diverting” groups), which
consist of conveying elements such as the aMFM roller con-
veyor “T22” in Fig. 1. Thus, defining aMFM compositions is
limited to these levels (R2).

To check consistency between different models (R3) Feld-
mann et al. [22] proposed a rule-based approach. In this ap-
proach, model transformation links are deployed to define con-
sistency rules on the meta level. When an inconsistency is iden-
tified, resolution actions are carried out manually. However,
consistency checks between models and program code are not
considered (R4).

C. Virtual Single Underlying Models (VSUM)

Orthographic Software Modeling (OSM) [23] is an ap-
proach for creating, organizing, and managing different views
in software development. It uses a Single Underlying Model
(SUM), from which different projections (also called "views")
are derived. Changes in a projection are propagated to the SUM,
which affects all other projections automatically. A SUM has a
single, static meta model.

Vitruvius [24] is a modeling framework for handling multiple
views upon a set of underlying models. Vitruvius is based on
the idea of OSM, but instead of using a SUM with a static meta

model, it uses multiple models and meta models. Meta model
elements are related to each other with mappings and con-
sistency rules. The models of these interconnected meta models
form a virtual single underlying model (VSUM), with a virtual
single underlying meta model (VSUMM). Vitruvius provides a
uniform access to the underlying (meta-)models and manages
the consistency in the VSUM via the consistency rules. OSM
and Vitruvius handle model (and partially model-code) con-
sistency in the software engineering domain, but are not used in
CPPS.

III. EVOLVING MATERIAL FLOW USE CASE

In this section, an application example from the domain of
aMFS is introduced and, subsequently, an aMFM from this ex-
ample is considered in detail.

A. Introduction of the Application Example

This section details the application example of an industrial
aMFS. This demonstrator provides the implementation and
evaluation of different control concepts in the field of intralo-
gistics containing 84 input and 83 output signals. The conveyor
hardware consists of two driven roller tracks that are each ap-
proximately 10.8 m long and an arc for in- and outfeed of
transport units (TUs) which can be filled, emptied or manipu-
lated in various ways. The tracks are divided into separately
controllable Conveying Groups and can be actuated pneumati-
cally or electrically, thus allowing individual control of each
roller conveyor. There are two stoppers which stop TUs at a
specific position. To determine the direction of a TU at the T-
junctions, a bar- or QR-code scanner can be added to the system
via an industrial fieldbus. The connection to several control sys-
tems, such as CODESYS PLC, Siemens S7-300, S7-1500 or
Nanobox PC SIMATIC IPC227 is feasible.

At the end of both rows as well as in the two T-junctions for
the cross transport, there are belt diverters. By means of a belt
diverter the TU is pushed over at a right angle to the conveying
direction, ending up on a parallel conveyor line at the right or

Fig. 1. Overview of conveying segment Self-X Material Flow Demonstrator. with conveying groups “merging” and “diverting”
and detailed view on conveying element “R4” with optional light barrier “LB_Gap”

left side. Diversion is carried out by lifting the TU and pushing
it over to the adjacent line.

B. Two Different Versions of the Belt Diverter

 In the following, the model-based description of a belt di-
verter using the meta model AutoMFM [25] is demonstrated
(cf. Fig. 2). Based on the structure of AutoMFM, the Conveying
Element belt diverter contains the five (sub)classes general de-
scription, status description, function description, module inter-
face description and control description as well as (sub)classes
for actuators to control the drives of the belt diverter and sensors
to read the light barriers. For the control of the actuators and the
reading of the sensors, Boolean variables have been declared.
For example, in order to identify whether the TU is handed over
to the neighboring module successfully, the light barrier (LB)
“LB_Gap” can be added to the module belt diverter (cf. detailed
view of aMFM “R4” in Fig. 1, right).

Fig. 2. Required modifications in the control software highlighted in the do-

main specific AutoMFM meta model

Moreover, the time to hand over the TU can be optimized,
i.e. lowering the belts immediately after handing over the TU
rather than using a parameterizable timer. Hence, the through-
put time of the module can be increased. In addition, with this
LB faults can be detected, e.g. TU is stuck. Therefore, the fol-
lowing modifications in the control of the module are neces-
sary: For storing the sensor value of the added LB, the input

variable “I_LB_Gap” is required. This variable has to be de-
fined in the function block (FB) of the module and considered
in the upper layer level “Group_VBC” to call the FB correctly.
Moreover, the function “Fault_Detection()” as well as the Bool-
ean variable “Fault_Detected” have to be defined, to enable the
described fault detection functionality. In order to optimize the
handover of a TU the function “FWD_Execute ()” in the class
“ForwardTU” must be adapted (cf. Fig. 3).

Fig. 3. Different control functions depending on whether belt diverter includes
additional light barrier

After the aMFM was modeled in Eclipse, a model to text
transformation to generate IEC 61131-3 compliant code was
applied. In order to apply the belt diverter model in the layout-
oriented editor, a PLCopenXML file dealing with the structure
and behavior of an Application Composer module was gener-
ated.

In addition to the belt diverter, two further Conveying Ele-
ments, a roller conveyor and an accumulation roller conveyor,
as well as seven Conveying Groups were developed to describe
different logistics functions such as accumulation roller func-
tions for two or three conveyors and merging or diverting T-

// BEGIN_METHOD FWD_Execute
IF #Interface_Execute THEN
 CASE #I_HandoverType OF

 "Move_Forward":
// ... Control code to forward TU

 "Move_Right":
 IF #I_LSU_present THEN

// Handover with LB
 IF #HS_current.busy AND NOT #HS_succes-

sor.busy AND #I_TU_at_LB_U THEN
 #HS_current.Handover_Begin := TRUE;
 END_IF;
 IF #HS_current.Handover_Begin AND

#I_TU_at_LB_H THEN
 #M_Handover_in_progress := TRUE;
 END_IF;
 IF #M_Handover_in_progress AND NOT

#I_TU_at_LB_H THEN
 #M_Handover_in_progress := FALSE;
 #HS_current.Handover_Begin := FALSE;
 #HS_current.Handover_End := TRUE;
 END_IF;
 IF #HS_successor.Receipt_End THEN
 #HS_current.Handover_End := FALSE;
 #HS_current.busy := FALSE;
 END_IF;

 ELSE
// Handover without LB
 IF #HS_current.busy AND NOT #HS_succes-

sor.busy AND #Timer1.Q THEN
 #M_wait_Operation := FALSE;
 #HS_current.Handover_Begin := TRUE;
 END_IF;
 IF #HS_current.Handover_Begin AND

#I_TU_at_LB_H THEN
 #M_Handover_in_progress := TRUE;
 END_IF;
 IF #M_Handover_in_progress AND NOT

#I_TU_at_LB_H THEN
 #M_Handover_in_progress := FALSE;
 #HS_current.Handover_Begin := FALSE;
 #HS_current.Handover_End := TRUE;
 END_IF;
 IF #HS_successor.Receipt_End THEN
 #HS_current.Handover_End := FALSE;
 #HS_current.busy := FALSE;
 END_IF;
 END_IF;
 END_CASE;

junctions. To identify TUs at the diverting T-junction, a model
for the handling system, i.e. scanner, was developed.

IV. REQUIREMENTS FOR DESIRABLE MDE APPROACHES

FOR AUTOMATED MATERIAL FLOW SYSTEMS

A desirable approach for MDE provides a solution space,
which offers a better degree of flexibility for implementing
changes and updates to the system. Especially structural
changes i.e. adding new components or changing the (mechan-
ical) configuration/layout of aMFMs require a more modular
approach. In addition, it is important and beneficial if the mod-
ules are described in an abstract way, so that overarching con-
cerns in terms of a range of aspects/domains can be handled.
This means that not only the mechanical layout of a changed
system can be checked for consistency but also the interconnec-
tion of the components in terms of electrics and software (mech-
atronic / software interfaces, workflow, production planning
etc.) can be checked for compliance and compatibility.

A requirement for a solution is to provide a range of descrip-
tion layers, which address various aspects as well as different
abstractions in order to address the consistency problem at the
appropriate level and aspect. Therefore, it is possible to create
composable modules at an arbitrary number of layers. In order
to achieve a high degree of flexibility, a desirable approach also
addresses the meta level. It describes a rich feature set at the
type level for various aspects of the system. This provides a
more flexible and scalable approach to system design and espe-
cially system evolution at the same time. Given such a multi-
level / multi-domain approach the specifications can be used to
check consistency and compatibility across domains and levels.
In the past such approaches have also been used only to gener-
ate more detailed levels from an abstract level. Such approaches
can be characterized as code generation / compilation of imple-
mentations from specifications. However, such approaches of-
ten provided only one way of working and local changes to the
more detailed levels (the implementation) could not be related
to the more abstract specifications. Thus, a more global check
whether the locally introduced changes are still compliant with
other components and aspects of the system was not possible.
This lack of global checks leads to the disregard of bidirectional
consistency relationships between all meta levels and across all
domains of aMFMs.

As another requirement, an approach should offer the basis
to detect changes and possibly areas to check consistency. A
change should be propagated to other levels and domains in or-
der to handle checks for compliance or to make appropriate
changes as well. A desirable approach provides the description
levels from the implementation to abstract specifications at the
meta level of components covering also a range of related do-
mains for the area of CPPSs. The elements of the various de-
scription levels also have a modular nature in order to support
the checking of interfaces and good (re)configuration opportu-
nities.

In detail, the model-based engineering of CPPS comprises
development artifacts of different domains. AMFMs in the pro-
posed approach comprise hardware and corresponding software
to realize specific atomic logistical steps, such as the move-
ment, scan, or manipulation of TUs. Their functionality is im-
plemented with PLCs. PLCs have no explicit knowledge of the

entire context in which they are embedded, and solely react on
sensor values they observe. The comprised software allows to
access the modules and trigger a certain behavior. The modules
usually have limited knowledge about their context by inter-
preting sensor values, but no explicit model of their neighbor-
hood. The coordinating software describes the overall intralo-
gistics process. It uses the aMFMs to execute this process. AM-
FMs and coordinating software are highly interrelated.

Three layers exist such an MDE approach (cf. Fig. 4): The
lowest layer includes real-life objects in terms of the system,
i.e. program code or hardware. Models are used to describe the
real-life objects with appropriate abstractions. Models, their el-
ements and their relationships are typed by meta models and
their meta model elements. MDE of intralogistics systems im-
plies that model-based artifacts for all development domains
exist. For each domain one or more meta models exist, with
partly overlapping semantics. E.g. an aMFM provides a func-
tion, which is referenced in a process, or the output of one mod-
ule is the input of another module. The program codes for the
PLCs of aMFMs describe input-output relations for sensors and
actuators (cf. Fig. 3). The model representation of this code de-
scribes the sensors and actuators, its possible states, and values
that the module measures and sets (see Fig. 2). A corresponding
meta model includes types of these elements. An aMFM is built
up using possibly multiple such PLC programs with associated
hardware as reusable units. Reuse can be achieved through
building or assembling the hardware of the module and trans-
ferring the generated code to the PLCs. The coordinating soft-
ware, that organizes the material flow process, can access the
functions and current states of the aMFMs on the code level.

When an aMFS is built in an environment, that does not
match earlier assumptions, unforeseen faults or errors are pos-
sible. E.g. the environmental temperature and air pollution are
higher than expected, so that the system has to be stopped reg-
ularly, to be cooled and cleaned. An automation engineer then
evolves the system to increase productivity, and informally doc-
uments the changes made to the system. Such change docu-
ments can easily be misunderstood or get lost. In both cases, an
inconsistency exists between the expectations towards the sys-
tem’s implementation and the actual implementation. A short-
coming of current approaches is that these ad-hoc changes are
not properly included in the development and evolution pro-
cess. It is important that these changes are included in an or-
dered evolution process, so that the changes are subject to con-
sistency management, and create reusable modules.

V. CONCEPT OF COUPLED MODELS AND META MODELS

TO SUPPORT EVOLUTION

We propose a more integrated style of MDE for aMFS. This
style uses aMFMs that contain the definition of an electri-
cal/mechanical assembly, program code for the PLCs, and mod-
els. Elements of the models of multiple aMFMs can be mapped
to each other. These mappings are subject to consistency rules.
The software that coordinates the process is developed based on
process models, that reference model elements of aMFMs.

Fig. 4 sketches the different development domains as col-
umns. The rows show the meta modeling abstraction layers of
MDE [26, Chapter 7]. Following this structure, the real-life ob-
jects (electrical/mechanical hardware and software) are in the

meta model layer M0. A model representation of the system is
in M1. The meta models are described in layer M2. They define
the concepts of the respective domains. The z-axis represents
evolution, where different versions of the artifacts may exist in
each cell. The arrows represent consistency relationships. Three
types of consistency relations exist. Vertical consistency is the
consistency between meta modeling levels. It is independent of
the development domains. The vertical consistency between
meta models and models is well understood and thoroughly de-
scribed [27, Chapter 5]. Approaches exist for validating and en-
forcing vertical consistency between M1 and M0 in the soft-
ware engineering domain. In previous work, we considered the
vertical consistency between software architecture models and
program code in the software engineering domain [28, 29].
Horizontal consistency is the consistency between artifacts of
the same meta modeling level, independent from the develop-
ment domain. Mappings can be created between meta model
elements (M2) of different domains, based on semantic interre-
lationships. These mappings can be used as the types for corre-
sponding mappings on the model level (M1). The real-world
objects (M0) are very heterogeneous, and hard to grasp in a for-
mal context. Nevertheless, the consistency between these ele-
ments benefits from derived consistency relations. If formal
consistency relations exist vertically between real-world ob-
jects and their model representation, then the consistency can
be checked on the model level.

Fig. 4. Coupling of artifacts in MDE for aMFSs in the proposed approach

The consistency between different versions of artifacts (z-
axis) is the lateral consistency in Fig. 4. It has to be examined
in dependency with the meta modelling level, and partly to the
development domain. The evolution of real-world objects (M0)
invalidates the consistency to the respective models, and to the
interrelated real-world objects of the same development do-
main. The model representation (M1) of the real world objects
has to be updated for certain changes in M0. E.g. when an
aMFM is updated with a new functionality, the new functional-
ity has to be part of its model. Additionally, it might be neces-
sary to propagate changes to the other development domain.
E.g. when a new functionality is modelled, the functionality has
to be made “known” to the coordinating software. Changes in
one model might require changes in other models to reestablish

the consistency. When no abstractions exist in M1 for repre-
senting the necessary changes, it can become necessary to
change the meta model (M2). Meta model changes can have a
huge impact on the overall system, because the meta models are
a shared resource for many other artifacts. Typically, extensions
are possible with a small impact, but changes and deletions of
elements are posing bigger challenges. At the meta modelling
levels M2 and M1, evolution consistency relationships are in-
dependent from the development domain. We define three ma-
turity levels for handling the aforementioned consistency rela-
tionships: 1) Formal checks to ensure consistency concerning
the introduced consistency relations exist (checking is done ei-
ther manually or automatically). 2) Differences between the
views are highlighted by an automated validation. 3) Inconsist-
encies are automatically resolved.

The following aspects should be modeled for aMFMs using
domain-specific models from a software perspective: (a) Func-
tions describe how they interact with TUs. Examples are “scan”
for a barcode scanner or “transport” for a roller conveyor. (b)
Abstract states define a named configuration of the module. Ex-
amples are “transporting” or “stopped”, and “filled” or “empty”
for a roller conveyor. (c) A context abstractly describes other
aMFMs with which a module directly interacts, and which
functions they provide or require. E.g. a roller conveyor has a
predecessor from which TUs are taken and a successor to which
a TU is given. For a given set of modules, elements of context
models are semantically overlapping: When a roller conveyor
A has a successor B, then A is the predecessor of B. Giving a
TU from A to B is semantically equivalent to taking it from A
for B. Context elements may have pre- and post-conditions as
properties. E.g. a conveyor input of a specific conveyor variant
assumes that a TU has a temperature 0°C < x < 100°C; its output
guarantees a temperature of 0°C < x < 100°C for example in a
cooling line for particle boards.

AMFMs are composable. A composed aMFM consists of
multiple interconnected instances of underlying aMFMs. They
build more abstract functions and states. Elements of multiple
context model instances can be coupled with each other by map-
ping elements. E.g. the output of one roller conveyor has to be
mapped to the input of another. This composability is a key to
handle large systems with a large set of models.

Mappings also exist between composite aMFMs and their
composed modules. E.g. Fig. 5 shows context models of the
roller conveyor module a) and the belt diverter module b). A
group of roller conveyors and a belt diverter build a diverting
group. Part c) of Fig. 5 shows the internals of the group. Three
roller conveyors and a belt diverter are instantiated, and their
context is mapped, so that the output of a module is the input of
another. The diverting group is a reusable composed aMFM. Its
functionality is realized by the implementation and models of
its composed modules. The group itself has abstract models
which describe its functions, states, and context. Part d) shows
a sketch of the context model of the diverting group, which
hides the internal implementation. It can be used in different
contexts without the necessity to change the implementation or
model of the composed modules. The diverting group of the ex-
ample would have the function to divert or not divert a trans-
portation unit onto a second line. Its states contain “transport-

Domain:
aMFMs

Domain:
Process

Coordinating
Software

M
2

Meta Model
(VSUMM)

M
1

Model
(VSUM)

M
0

Real
World

ing”, or “stopped”. Its context has one predecessor and two suc-
cessors, one for each line. The mapping of context models can
be used to ensure the consistency between aMFMs. Consistency
rules can be defined over meta model elements of the context
model of aMFMs. E.g. a conveyor input can be mapped to a
conveyor output, given the pre- and post-conditions match.

Fig. 5. Hierarchical view upon composed context models (excerpt of VSUM)

Composed aMFMs in the presented approach are aMFMs
themselves, so that they can be subject to composition. An ar-
bitrary number of description layers can be built this way. E.g.
in the use case of Section III, the roller conveyors and belt di-
verters are basic aMFMs. The diverting group comprises three
interconnected roller conveyors and a belt diverter. This group
can be part of a more abstract aMFM ranging from the diverting
group to the merging group in Fig. 1. The resulting composed
aMFM can then be reused in similar systems, to implement a
diverted line for manually checking TUs, and remerging them
after fixing any errors. Analogously, the complete system of the
use case can be an aMFM, that may be instantiated multiple
times for reuse, probably as a module of a larger system.

The model of a complete system can be built by creating and
interconnecting instances of the top-most aMFMs. The mapped
models can be merged virtually. A software that controls the
material flow process can be developed based on the merged
model as a virtual single underlying model (VSUM) [23]. The
VSUM is not a separate model, but interconnects the models of
the aMFS. It describes the functions, states, and context of the
overall system. Fig. 5 shows an excerpt (a view) upon the
VSUM of the given use case. The meta model of the VSUM is
the set of the meta models of its models, with mappings as de-
scribed above. It is called virtual single underlying meta model
(VSUMM) [23].

The coordinating software is implemented using a process-
oriented modeling language such as BPMN [30]. It defines and
monitors the material flow. The activities and decisions of the
process models are mapped to functions and states of the
VSUM of instantiated aMFMs. The process model therefore
contributes to the VSUM(M). This mapping of process and

functions/states can be used to ensure the consistency between
process and system.

VI. DEVELOPMENT AND EVOLUTION WITH COUPLED

(META) MODELS

Using the described MDE method, the (top-down) develop-
ment of an aMFS consists of the following stages: First the ma-
terial flow must be planned and described in a requirements
document. Then the system can be assembled on a model-level
by reusing aMFMs from a catalogue or defining new aMFMs
where necessary. The elements of the context models must be
mapped to each other for all aMFMs. This is not necessary for
the children of reused composite aMFMs, because the instanti-
ation and mapping is already included in the composition. The
consistency rules must be preserved by the final mapping. A
process model must be created that defines the material flow,
and its activities must be mapped to functions and states of the
system model. Program code for the PLCs and the process im-
plementation can be generated and adapted to the specific needs
of the process.

The presented module-oriented approach of MDE supports
on-site evolution. An on-site evolution (here usually regarded
as bottom-up process) consists of the following stages: An
expert (e.g. a development engineer from the domain of aMFS)
changes the system’s hardware or software on-site. The
engineer adapts the models of the affected aMFMs, to make
them consistent with the system changes. The engineer defines
new versions of the aMFMs with changed hardware, code, or
models. In the VSUM, the consistency between the models
must now be re-evaluated. Consider the example system, where
a belt diverter module is replaced on-site with a module, that
has an additional light barrier, as described above. The hard-
ware, program code, and model of the diverting group is up-
dated, and a new version of the module is defined. The updated
diverting group can now be in an additional state, that indicates
a stuck TU. This state has to be considered by the coordinating
software. These differences are detected by consistency rules,
e.g. implemented with model checking algorithms, model-
transformations, and program code parsers/generators. To sup-
port reuse, the new version of the aMFM should be registered
in a catalogue. In addition, even “simple” code maintenance e.g.
substituting old program code by new less faulty one can be
addressed here as well. Given a modular structure, limited
model checking of only the relevant code slices can be used to
check the compatibility of the changed code with the rest of the
module’s interior and the result of a correction / change can be
traced as well to expose possible desired / undesired
interactions with the rest of the system.

This style of aMFMs makes the reuse of basic and compo-
sitional modules easier to achieve. It increases the reusability of
aMFMs and the evolvability and maintainability of aMFSs. The
requirements stated in Section I are fulfilled as follows: (R1)
The approach explicitly describes modules, that contain com-
posed mechanical/electrical hardware, models, and program
code. (R2) Modules in the approach are composable on arbi-
trary levels. These modules can be reused in other contexts.
(R3) The consistency between different models is handled with
the notion of the VSUM. I.e. semantically associated model el-

ements can be mapped to each other with consistency preserv-
ing rules. (R4) The code is considered a part of the VSUM.
Consistency rules exist to create or adapt program code from
(changed) models, and to create models from program code.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a novel approach of model-driven
engineering for aMFSs. The presented approach aims at in-
creasing the reusability and decreasing the error-proneness of
current development approaches by defining aMFMs. AMFMs
comprise hardware, program code, and models that describe
their functions, states, and abstract context. Composite aMFMs
and complete systems can be defined by instantiating aMFMs
and mapping their context model elements to each other in ac-
cordance to consistency rules. When such a system evolves, the
changes are propagated to the models of new variants of aM-
FMs, and the consistency is re-evaluated. Changed aMFMs are
made available for reuse, to benefit from the knowledge gener-
ated in production.

In future work, we plan to automate the propagation of
changes in a system towards the models. The mapping between
context elements of aMFMs can be automatically created by
communication between the aMFMs. The model of the com-
plete system can then be updated automatically and can be
checked against its consistency rules. The new functions and
states can be made available to the process implementation.

REFERENCES
[1] S. Feldmann, J. Fuchs, and B. Vogel-Heuser, “Modularity, variant and

version management in plant automation - Future challenges and state of
the art,” in Proceedings of International Design Conference, DESIGN,
2012, vol. DS 70, pp. 1689-1698.

[2] B. Vogel-Heuser, J. Fischer, S. Feldmann, S. Ulewicz, and S. Rösch,
“Modularity and Architecture of PLC-based Software for Automated Pro-
duction Systems: An analysis in industrial companies,” Journal of Sys-
tems and Software, vol. 131, pp. 35-62, 2017.

[3] B. Vogel-Heuser et al., “Challenges for Software Engineering in Auto-
mation,” Journal of Software Engineering and Applications, vol. 7, no. 5,
pp. 440-451, 2014.

[4] S. A. Bohner and S. Mohan, “Model-based engineering of software: Three
productivity perspectives,” Proceedings - 33rd Annual IEEE Software
Engineering Workshop, SEW-33 2009, pp. 35-44, 2010.

[5] V. Vyatkin, “Software Engineering in Industrial Automation,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1234-1249,
2013.

[6] X. Hoang, A. Fay, P. Marks and M. Weyrich, “Systematization approach
for the adaptation of manufacturing machines,” in IEEE International
Conference on Emerging Technologies and Factory Automation, 2016, S.
1-4.

[7] M. ten Hompel and M. Henke, “Logistik 4.0,” in Industrie 4.0 in Produk-
tion, Automatisierung und Logistik: Anwendung · Technologien · Migra-
tion, T. Bauernhansl, M. ten Hompel, and B. Vogel-Heuser, Eds. Wiesba-
den: Springer Fachmedien Wiesbaden, 2014, pp. 615-624.

[8] B. Vogel-Heuser, T. Bauernhansl, and M. Ten Hompel, Handbuch Indust-
rie 4.0 Bd.3 Logistik. Springer Berlin Heidelberg, 2017.

[9] H.-C. Pfohl, B. Yahsi, and T. Kuznaz, “The impact of Industry 4.0 on the
Supply Chain,” in Proceedings of the Hamburg International Conference
of Logistic (HICL)-20, no. August, pp. 32-58, 2015.

[10] M. ten Hompel, S. Libert, and U. Sondhof, “Distributed Control Nodes
for Material Flow System Controls on the Example of Unit Load Con-
veyor and Sorter Facilities,” Logistics Journal, no. NOVEMBER, pp.
1-10, 2013.

[11] C. Timm et al., “Decentralized Control of a Material Flow System ena-
bled by an Embedded Computer Vision System,” in IEEE International
Conference on Communications Workshops (ICC), 2011, pp. 1-5.

[12] A. Kamagaew, J. Stenzel, A. Nettstrater, and M. Ten Hompel, “Concept
of cellular transport systems in facility logistics,” in ICARA 2011 [- Pro-
ceedings of the 5th International Conference on Automation, Robotics
and Applications, 2011, pp. 40-45.

[13] S. Libert, “Beitrag zur agentenbasierten Gestaltung von Materialflusssteu-
erungen,” Dissertation, Faculty of Mechanical Engineering, Technical
University of Dortmund, 2011.

[14] M. ten Hompel, S. Libert, and M. Roidl, “Erarbeitung von Methoden und
Regeln zur Gestaltung agentengestützter, dezentraler Steuerungen für den
Einsatz in komplexen Materialflusssystemen. Forschungsbericht,” no.
15313, 2009.

[15] S. Libert and M. Ten Hompel, “Ontology-based communication for the
decentralized material flow control of a conveyor facility,” Logistics Re-
search, vol. 3, no. 1, pp. 29-36, 2010.

[16] O. Kipouridis, M. Roidl, W. A. Günthner, and M. Ten Hompel, “Cloud-
Based Platform for Collaborative Design of Decentralized Controlled Ma-
terial Flow Systems in Facility Logistics,” in Proceedings of the 4th In-
ternational Conference LDIC, 2015, pp. 313-322.

[17] V. Boschian, M. Dotoli, M. P. Fanti, G. Iacobellis, and W. Ukovich, “A
metamodeling approach to the management of intermodal transportation
networks,” IEEE Transactions on Automation Science and Engineering,
vol. 8, no. 3, pp. 457-469, 2011.

[18] G. Black and V. Vyatkin, “Intelligent component-based automation of
baggage handling systems with IEC 61499,” IEEE Transactions on Auto-
mation Science and Engineering, vol. 7, no. 2, pp. 337-351, 2010.

[19] R. Priego, A. Armentia, E. Estévez and M. Marcos, “On Applying MDE
for Generating Reconfigurable Automation Systems,” in IEEE Interna-
tional Conference on Industrial Informatics, 2015, pp. 1233–1238.

[20] T. Aicher, D. Schütz, M. Spindler, W. Günthner and B. Vogel-Heuser,
“Automatic analysis and adaption of the interface of automated material
flow systems to improve backwards compatibility,” in 20th IFAC World
Congress, Jul. 2017, pp. 1217-1224.

[21] VDI/VDMA, “System Architecture for Intralogistics (SAIL) – Funda-
mentals,” in VDI Recommendation 5100, 2011.

[22] S. Feldmann, M. Wimmer, K. Kernschmidt and B. Vogel-Heuser, “A
comprehensive approach for managing inter-model inconsistencies in au-
tomated production systems engineering,” in IEEE International Confer-
ence on Automation Science and Engineering, Aug. 2016, pp. 1120-1127.

[23] C. Atkinson, D. Stoll, C. Tunjic: “Orthographic Service Modeling”, in
IEEE 15th International Enterprise Distributed Object Computing Con-
ference Workshops, Institute of Electrical & Electronics Engineers, 2011.

[24] M. E. Kramer, E. Burger, and M. Langhammer: “View-centric engineer-
ing with synchronized heterogeneous models”. Proceedings of the 1st
Workshop on View-Based, Aspect-Oriented and Orthographic Software
Modelling, VAO ’13, ACM, 2013

[25] T. Aicher, D. Regulin, D. Schütz, M. Lieberoth-Leden, Christian, Spin-
dler, W. A. Günthner, and B. Vogel-Heuser, “Increasing flexibility of
modular automated material flow systems: A meta model architecture,”
in 8th IFAC Conference on Manufacturing Modelling, Management and
Control (MIM), 2016.

[26] Object Management Group, OMG Meta Object Facility (MOF): “Core
Specification, Version 2.5.1”, 2016,
http://www.omg.org/spec/MOF/2.5.1

[27] A. Kleppe, “Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels,” Addison-Wesley Professional, 2008,
ISBN 978-0-321-55345-4.

[28] M. Konersmann, “A Process for Explicitly Integrated Software Architec-
ture,” Softwaretechnik-Trends, ISSN: 0720-8928, vol. 36, no. 2, 2016.

[29] M. Konersmann and M. Goedicke, “A Conceptual Framework and Exper-
imental Workbench for Architectures,” in Software Service and Applica-
tion Engineering, vol. 7365, M. Heisel, Ed. Springer Berlin Heidelberg,
2012, pp. 36–52.

[30] OMG, “Business Process Model and Notation (BPMN), Version 2.0”.
Object Management Group, 2011, http://www.omg.org/spec/BPMN/2.0

