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Abstract—The software of automated Material Flow Systems 

(aMFS) is usually tightly coupled to the system in which it is em-
bedded. Reuse of control software of aMFS is commonly achieved 
through copying, pasting, and modifying existing control code 
from a similar system. When a module of an aMFS is updated in 
production, e.g. to resolve issues, the program code and hardware 
components are changed. The change is usually documented infor-
mally or resides only in the mind of the automation engineer. 
When new hardware is added to a module, the control software 
often has to be changed in many different parts, or a new control 
function has to be developed, which wraps the existing code. This 
way of handling the development and evolution of aMFSs is error-
prone and reduces the software quality. A modular, model-based 
software architecture for aMFS can reduce the error-proneness 
and improve the software quality. In this paper we propose a 
model-based development method for aMFS. It is used to create a 
modular software architecture that describes composable mod-
ules. The models, their meta models, and the program code therein 
are coupled with each other via mappings and consistency rules, 
so that the consistency can be validated. Bidirectional transfor-
mations between the program code and models can be created. As 
part of the documentation, changes in the program code and 
model must be synchronized. 

Keywords— methodologies and tools; automation systems; flex-
ible manufacturing systems; software evolution; CPPS; intralogis-
tics  

I.  INTRODUCTION 

Automated Material Flow Systems (aMFS) are a crucial and 
standard part of Cyber Physical Production Systems (CPPS). 
They connect different machines or plant parts providing the 
transport of material from one to the other. Considering the cur-
rent (re-)engineering of aMFS, the initial (re-)engineering 
stage, i.e. drawing up the material flow plan of the system, gen-
erally serves as requirements document for other engineering 
disciplines, e.g. software engineering. The applied electri-
cal/mechanical components of an aMFS as well as the assembly 
of these components with one another must be identified man-
ually from the material flow plan and transferred into the con-
trol software. 

After that, reuse of control software is commonly achieved 
through copying, pasting and modifying existing control code 

from a similar aMFS. Due to the static structure and high vari-
ability of today’s control software of aMFS, the modification of 
existing control code is error-prone and requires a great deal of 
effort to develop. More specifically, the static structure prevents 
commonly required adaptions of the control software for a me-
chanical and electrical component, e.g. adding a further light 
barrier, or exchanging a mechanical and electrical component 
for one possessing a higher version number, e.g. a barcode scan-
ner with a Quick Response (QR) scanner. Often, the control 
software has to be modified in different parts of the monolithic 
structure or a new and individual control function has to be pro-
grammed to wrap the existing control code, i.e. to adapt the in-
terfaces and/or behavior. Both approaches are error-prone and 
reduce the software quality.  

Reusability can be improved by minimizing the static struc-
ture of an aMFS and development effort and error-proneness are 
reduced by setting up a modular software architecture [1, 2]. By 
using a modular software architecture for each electrical/me-
chanical component of an aMFS, a (pre)defined software com-
ponent–i.e. an automated material flow module (aMFM)–exists, 
which can execute specific tasks and offer the possibility to in-
teract with neighboring modules. This way, the modular struc-
ture of electrical/mechanical components in aMFS can be trans-
ferred into software engineering in order to improve reusability 
and software quality and reduce effort and error-proneness.  

Considering different methodologies in software develop-
ment of automated Production Systems (aPS), model-driven en-
gineering (MDE) is frequently recommended in research and in-
dustry due to advantages regarding engineering and commis-
sioning time [3, 4, 5]. Based on an MDE approach, domain-spe-
cific meta models, e.g. for aMFS, enabling the encapsulated de-
scription of logistics modules and their related information as 
well as the composition of multiple modules to a system could 
be developed, which is a widespread approach in research for 
aPS [5]. To apply the model-based description of the systems, 
an automated control code generation is used. 

For supporting the efficient reuse and evolution, we define 
four requirements that have to be fulfilled by an MDE approach 
for aMFS: (R1) An aMFS must be built by instantiating encap-
sulated modules. Types of modules must be described in a ho-
listic way, so that they can be instantiated and reused. (R2) It 
must be possible to build systems out of arbitrarily composable 



modules. I.e. a module can either be implemented by specific 
hardware and software (basic modules), or by instantiating and 
interconnecting other modules (composed modules). (R3) Con-
sistency must be preserved between models of interconnected 
modules. These models have overlapping semantics. E.g. the 
output of one module is the input of another module. It must be 
possible to formally validate or (re)create this consistency. (R4) 
Consistency must be ensured between models of the aMFMs 
and the implemented program code. While models describe the 
way the system is working, the program code implements this 
specification. When the program code or the model is changed, 
changes must be propagated to the other artifact, to support (ad-
hoc) evolution. 

The main contribution of this paper is to highlight the ben-
efits of a more modular and meta model-based approach com-
pared to classical MDE approaches, to ease software evolution 
of aMFS as a crucial part of any CPPS. 

The remaining paper is structured as follows: after the state 
of the art in intralogistics and virtual models (Section II) a real 
industrial use case is introduced, which requires evolution of 
existing automation software (Section III). The evolution pro-
cess is performed with a current, model-based approach as de-
scribed in Section IV. This approach fails to fulfill all require-
ments stated above. In Section V the generic approach is pre-
sented, which defines composable, model-based modules. The 
approach preserves the consistency between the models, and 
between models and the program code with bidirectional rules. 
Section VI describes how the approach is used for development 
and evolution of aMFSs, and how it relates to the requirements 
stated above, before the paper concludes and gives an outlook 
on future work in Section VII. 

II. STATE OF THE ART IN INTRALOGISTICS AND VIRTUAL 

MODELS 

In the following, the state of the art in system development 
for intralogistics in general is presented and, subsequently, cur-
rent model-based approaches for aMFSs are introduced. The 
section concludes with an overview of current approaches for 
virtual modeling, which is used in the presented approach. 

A. Trends in Logistics 

Today’s aMFSs are static and long-living systems, which are 
currently mainly controlled by a programmable logic controller 
(PLC) programmed in accordance to the IEC 61131-3 standard. 
Thus, the evolution of an aMFS requires a re-engineering of the 
PLC control program, which is a time-consuming task as a 
change in the control program usually entails complex software 
tests [6]. Ten Hompel states that the supply chain will obviously 
undergo an organizational change and the way forward to the 
introduction of Internet of Things or Cyber-Physical Systems in 
the control of aMFS has been marked out due to Industrie 4.0 
[7, 8]. Therefore, seven characteristic and interrelated features 
of Industrie 4.0 can be highlighted, i.e. digitalization, autono-
mization, transparency, mobility, modularization, network-col-
laboration and socialization. Furthermore, related technologies 
and concepts are validated to determine their contribution to the 
future development of the industrial (r)evolution. For instance, 
Pfohl et al. [9] propose a theoretical framework to evaluate key 
technologies and concepts with respect to their impact on the 

supply chain. The impact of Industrie 4.0 on the control strate-
gies of supply chains, e.g. central, hierarchical/distributed or 
decentralized, is not addressed. 

B. Model-Based Engineering of Automated Material Flow 
Systems 

Ten Hompel and his group present different approaches of 
distributed control strategies [10-14]. They developed and im-
plemented a decentralized control system based on embedded 
technology and Internet standards using autonomous software 
modules to control the aMFS. To improve the flexibility of the 
system, the control of the logistics functions is separated from 
the control of the hardware [10]. The transformation of this ap-
proach for centralized control strategies is not considered and 
still an open research question. For the implementation of a dis-
tributed system, Libert [13] presents a multi agent system. 
Thus, the author suggests that the flexibility of the control sys-
tem can be improved. For the development of the multi agent 
system, the Java Agent Development Framework (JADE) is 
used, which is not compliant with IEC 61131-3. Another ap-
proach from Libert et al. [15] presents an ontology-based com-
munication model for distributed material flow control systems. 
The approach is also based on software agents that represent 
several devices relevant to the Internet of Things. The authors 
focus on the development of a communication environment for 
decentralized software agents. Libert et al. describe several Do-
main Ontology Description Diagrams (DODD) based on UML, 
e.g. Function ontology, Transport ontology or Workflow ontol-
ogy. Additionally, the authors introduce a communication on-
tology model for distributed aMFS based on software agents. 
This contribution focuses on description of the architecture of 
the approach. Kipouridis et al. [16] present an approach for a 
cloud-based platform which enables collaborative development 
and visualization of decentralized aMFS. The platform is being 
developed in the context of the research project Collaborative 
design of Decentralized aMFS (KoDeMat). For the control, a 
distributed multi agent system is used. However, a model-based 
approach of developing the multi agent system is not addressed. 

Boschian et al. [17] present an integrated system that can be 
applied to manage intermodal transportation networks at oper-
ational and tactical levels. The approach can be divided into two 
core modules: the intermodal transportation networks reference 
module and the simulation module. The paper proposes a mod-
eling approach describing the structure and behavior of inter-
modal transportation networks. The presented modeling proce-
dure is a top-down technique based on UML. The knowledge 
base of the integrated system is defined by a reference model 
that foresees the system behavior and provides the data for man-
agement strategies.  

Black and Vyatkin [18] describe an agent-based design of a 
baggage handling system applying the IEC 61499 standard. 
Based on function block descriptions, the decentralized system 
is able to run immediately without programming. However, the 
approach does not provide a hierarchical generalized meta 
model architecture which can be used to describe different mod-
ules in the field of aMFS. 

To assure availability of automation systems Priego et al. 
[19] present a model-based design approach that supports the 



definition of reconfiguration requirements of IEC 61131-3 soft-
ware programs. A meta model is defined and used to automati-
cally extend the PLC control code with the elements needed to 
enable reconfiguration at run time. However, the evolution of 
the systems is not targeted in the approach. 

Aicher et al. [20] introduce a model-based approach for au-
tomatically analyzing and adapting the interfaces of aMFMs to 
enable interaction between neighboring modules while ensur-
ing downward compatibility by the help of wrappers. Within 
the meta model, aMFMs are grouped into four levels following 
the System Architecture for Intralogistics [21]: The top level is 
the conveying area (an entire manufacturing hall), which is sep-
arated into conveying segments (such as the demonstrator plant 
depicted in Fig. 1). These in turn are made up of conveying 
groups (see Fig. 1, “merging” and “diverting” groups), which 
consist of conveying elements such as the aMFM roller con-
veyor “T22” in Fig. 1. Thus, defining aMFM compositions is 
limited to these levels (R2). 

To check consistency between different models (R3) Feld-
mann et al. [22] proposed a rule-based approach. In this ap-
proach, model transformation links are deployed to define con-
sistency rules on the meta level. When an inconsistency is iden-
tified, resolution actions are carried out manually. However, 
consistency checks between models and program code are not 
considered (R4). 

C. Virtual Single Underlying Models (VSUM) 

Orthographic Software Modeling (OSM) [23] is an ap-
proach for creating, organizing, and managing different views 
in software development. It uses a Single Underlying Model 
(SUM), from which different projections (also called "views") 
are derived. Changes in a projection are propagated to the SUM, 
which affects all other projections automatically. A SUM has a 
single, static meta model. 

Vitruvius [24] is a modeling framework for handling multiple 
views upon a set of underlying models. Vitruvius is based on 
the idea of OSM, but instead of using a SUM with a static meta 

model, it uses multiple models and meta models. Meta model 
elements are related to each other with mappings and con-
sistency rules. The models of these interconnected meta models 
form a virtual single underlying model (VSUM), with a virtual 
single underlying meta model (VSUMM). Vitruvius provides a 
uniform access to the underlying (meta-)models and manages 
the consistency in the VSUM via the consistency rules. OSM 
and Vitruvius handle model (and partially model-code) con-
sistency in the software engineering domain, but are not used in 
CPPS. 

III. EVOLVING MATERIAL FLOW USE CASE 

In this section, an application example from the domain of 
aMFS is introduced and, subsequently, an aMFM from this ex-
ample is considered in detail. 

A. Introduction of the Application Example 

This section details the application example of an industrial 
aMFS. This demonstrator provides the implementation and 
evaluation of different control concepts in the field of intralo-
gistics containing 84 input and 83 output signals. The conveyor 
hardware consists of two driven roller tracks that are each ap-
proximately 10.8 m long and an arc for in- and outfeed of 
transport units (TUs) which can be filled, emptied or manipu-
lated in various ways. The tracks are divided into separately 
controllable Conveying Groups and can be actuated pneumati-
cally or electrically, thus allowing individual control of each 
roller conveyor. There are two stoppers which stop TUs at a 
specific position. To determine the direction of a TU at the T-
junctions, a bar- or QR-code scanner can be added to the system 
via an industrial fieldbus. The connection to several control sys-
tems, such as CODESYS PLC, Siemens S7-300, S7-1500 or 
Nanobox PC SIMATIC IPC227 is feasible. 

At the end of both rows as well as in the two T-junctions for 
the cross transport, there are belt diverters. By means of a belt 
diverter the TU is pushed over at a right angle to the conveying 
direction, ending up on a parallel conveyor line at the right or 

 

Fig. 1. Overview of conveying segment Self-X Material Flow Demonstrator. with conveying groups “merging” and “diverting” 
and detailed view on conveying element “R4” with optional light barrier “LB_Gap” 



left side. Diversion is carried out by lifting the TU and pushing 
it over to the adjacent line.  

B. Two Different Versions of the Belt Diverter 

 In the following, the model-based description of a belt di-
verter using the meta model AutoMFM [25] is demonstrated 
(cf. Fig. 2). Based on the structure of AutoMFM, the Conveying 
Element belt diverter contains the five (sub)classes general de-
scription, status description, function description, module inter-
face description and control description as well as (sub)classes 
for actuators to control the drives of the belt diverter and sensors 
to read the light barriers. For the control of the actuators and the 
reading of the sensors, Boolean variables have been declared. 
For example, in order to identify whether the TU is handed over 
to the neighboring module successfully, the light barrier (LB) 
“LB_Gap” can be added to the module belt diverter (cf. detailed 
view of aMFM “R4” in Fig. 1, right). 

 
Fig. 2. Required modifications in the control software highlighted in the do-

main specific AutoMFM meta model 

Moreover, the time to hand over the TU can be optimized, 
i.e. lowering the belts immediately after handing over the TU 
rather than using a parameterizable timer. Hence, the through-
put time of the module can be increased. In addition, with this 
LB faults can be detected, e.g. TU is stuck. Therefore, the fol-
lowing modifications in the control of the module are neces-
sary: For storing the sensor value of the added LB, the input 

variable “I_LB_Gap” is required. This variable has to be de-
fined in the function block (FB) of the module and considered 
in the upper layer level “Group_VBC” to call the FB correctly. 
Moreover, the function “Fault_Detection()” as well as the Bool-
ean variable “Fault_Detected” have to be defined, to enable the 
described fault detection functionality. In order to optimize the 
handover of a TU the function “FWD_Execute ()” in the class 
“ForwardTU” must be adapted (cf. Fig. 3). 

Fig. 3. Different control functions depending on whether belt diverter includes 
additional light barrier 

After the aMFM was modeled in Eclipse, a model to text 
transformation to generate IEC 61131-3 compliant code was 
applied. In order to apply the belt diverter model in the layout-
oriented editor, a PLCopenXML file dealing with the structure 
and behavior of an Application Composer module was gener-
ated. 

In addition to the belt diverter, two further Conveying Ele-
ments, a roller conveyor and an accumulation roller conveyor, 
as well as seven Conveying Groups were developed to describe 
different logistics functions such as accumulation roller func-
tions for two or three conveyors and merging or diverting T-

// BEGIN_METHOD FWD_Execute 
IF #Interface_Execute THEN 
  CASE #I_HandoverType OF 
 
    "Move_Forward": 
// ... Control code to forward TU 
 
    "Move_Right": 
      IF #I_LSU_present THEN 
 
// Handover with LB 
        IF #HS_current.busy AND NOT #HS_succes-

sor.busy AND #I_TU_at_LB_U THEN 
          #HS_current.Handover_Begin := TRUE; 
        END_IF; 
        IF #HS_current.Handover_Begin AND 

#I_TU_at_LB_H THEN 
          #M_Handover_in_progress := TRUE; 
        END_IF; 
        IF #M_Handover_in_progress AND NOT 

#I_TU_at_LB_H THEN 
          #M_Handover_in_progress := FALSE; 
          #HS_current.Handover_Begin := FALSE; 
          #HS_current.Handover_End := TRUE; 
        END_IF; 
        IF #HS_successor.Receipt_End THEN 
          #HS_current.Handover_End := FALSE; 
          #HS_current.busy := FALSE; 
        END_IF; 
         
      ELSE 
// Handover without LB 
        IF #HS_current.busy AND NOT #HS_succes-

sor.busy AND #Timer1.Q THEN 
          #M_wait_Operation := FALSE; 
          #HS_current.Handover_Begin := TRUE; 
        END_IF; 
        IF #HS_current.Handover_Begin AND 

#I_TU_at_LB_H THEN 
          #M_Handover_in_progress := TRUE; 
        END_IF; 
        IF #M_Handover_in_progress AND NOT 

#I_TU_at_LB_H THEN 
          #M_Handover_in_progress := FALSE; 
          #HS_current.Handover_Begin := FALSE; 
          #HS_current.Handover_End := TRUE; 
        END_IF; 
        IF #HS_successor.Receipt_End THEN 
          #HS_current.Handover_End := FALSE; 
          #HS_current.busy := FALSE; 
        END_IF; 
      END_IF; 
  END_CASE; 



junctions. To identify TUs at the diverting T-junction, a model 
for the handling system, i.e. scanner, was developed. 

IV. REQUIREMENTS FOR DESIRABLE MDE APPROACHES 

FOR AUTOMATED MATERIAL FLOW SYSTEMS 

A desirable approach for MDE provides a solution space, 
which offers a better degree of flexibility for implementing 
changes and updates to the system. Especially structural 
changes i.e. adding new components or changing the (mechan-
ical) configuration/layout of aMFMs require a more modular 
approach. In addition, it is important and beneficial if the mod-
ules are described in an abstract way, so that overarching con-
cerns in terms of a range of aspects/domains can be handled. 
This means that not only the mechanical layout of a changed 
system can be checked for consistency but also the interconnec-
tion of the components in terms of electrics and software (mech-
atronic / software interfaces, workflow, production planning 
etc.) can be checked for compliance and compatibility.  

A requirement for a solution is to provide a range of descrip-
tion layers, which address various aspects as well as different 
abstractions in order to address the consistency problem at the 
appropriate level and aspect. Therefore, it is possible to create 
composable modules at an arbitrary number of layers. In order 
to achieve a high degree of flexibility, a desirable approach also 
addresses the meta level. It describes a rich feature set at the 
type level for various aspects of the system. This provides a 
more flexible and scalable approach to system design and espe-
cially system evolution at the same time. Given such a multi-
level / multi-domain approach the specifications can be used to 
check consistency and compatibility across domains and levels. 
In the past such approaches have also been used only to gener-
ate more detailed levels from an abstract level. Such approaches 
can be characterized as code generation / compilation of imple-
mentations from specifications. However, such approaches of-
ten provided only one way of working and local changes to the 
more detailed levels (the implementation) could not be related 
to the more abstract specifications. Thus, a more global check 
whether the locally introduced changes are still compliant with 
other components and aspects of the system was not possible. 
This lack of global checks leads to the disregard of bidirectional 
consistency relationships between all meta levels and across all 
domains of aMFMs. 

As another requirement, an approach should offer the basis 
to detect changes and possibly areas to check consistency. A 
change should be propagated to other levels and domains in or-
der to handle checks for compliance or to make appropriate 
changes as well. A desirable approach provides the description 
levels from the implementation to abstract specifications at the 
meta level of components covering also a range of related do-
mains for the area of CPPSs. The elements of the various de-
scription levels also have a modular nature in order to support 
the checking of interfaces and good (re)configuration opportu-
nities. 

In detail, the model-based engineering of CPPS comprises 
development artifacts of different domains. AMFMs in the pro-
posed approach comprise hardware and corresponding software 
to realize specific atomic logistical steps, such as the move-
ment, scan, or manipulation of TUs. Their functionality is im-
plemented with PLCs. PLCs have no explicit knowledge of the 

entire context in which they are embedded, and solely react on 
sensor values they observe. The comprised software allows to 
access the modules and trigger a certain behavior. The modules 
usually have limited knowledge about their context by inter-
preting sensor values, but no explicit model of their neighbor-
hood. The coordinating software describes the overall intralo-
gistics process. It uses the aMFMs to execute this process. AM-
FMs and coordinating software are highly interrelated.  

Three layers exist such an MDE approach (cf. Fig. 4): The 
lowest layer includes real-life objects in terms of the system, 
i.e. program code or hardware. Models are used to describe the 
real-life objects with appropriate abstractions. Models, their el-
ements and their relationships are typed by meta models and 
their meta model elements. MDE of intralogistics systems im-
plies that model-based artifacts for all development domains 
exist. For each domain one or more meta models exist, with 
partly overlapping semantics. E.g. an aMFM provides a func-
tion, which is referenced in a process, or the output of one mod-
ule is the input of another module. The program codes for the 
PLCs of aMFMs describe input-output relations for sensors and 
actuators (cf. Fig. 3). The model representation of this code de-
scribes the sensors and actuators, its possible states, and values 
that the module measures and sets (see Fig. 2). A corresponding 
meta model includes types of these elements. An aMFM is built 
up using possibly multiple such PLC programs with associated 
hardware as reusable units. Reuse can be achieved through 
building or assembling the hardware of the module and trans-
ferring the generated code to the PLCs. The coordinating soft-
ware, that organizes the material flow process, can access the 
functions and current states of the aMFMs on the code level.  

When an aMFS is built in an environment, that does not 
match earlier assumptions, unforeseen faults or errors are pos-
sible. E.g. the environmental temperature and air pollution are 
higher than expected, so that the system has to be stopped reg-
ularly, to be cooled and cleaned. An automation engineer then 
evolves the system to increase productivity, and informally doc-
uments the changes made to the system. Such change docu-
ments can easily be misunderstood or get lost. In both cases, an 
inconsistency exists between the expectations towards the sys-
tem’s implementation and the actual implementation. A short-
coming of current approaches is that these ad-hoc changes are 
not properly included in the development and evolution pro-
cess. It is important that these changes are included in an or-
dered evolution process, so that the changes are subject to con-
sistency management, and create reusable modules. 

V. CONCEPT OF COUPLED MODELS AND META MODELS 

TO SUPPORT EVOLUTION 

We propose a more integrated style of MDE for aMFS. This 
style uses aMFMs that contain the definition of an electri-
cal/mechanical assembly, program code for the PLCs, and mod-
els. Elements of the models of multiple aMFMs can be mapped 
to each other. These mappings are subject to consistency rules. 
The software that coordinates the process is developed based on 
process models, that reference model elements of aMFMs. 

Fig. 4 sketches the different development domains as col-
umns. The rows show the meta modeling abstraction layers of 
MDE [26, Chapter 7]. Following this structure, the real-life ob-
jects (electrical/mechanical hardware and software) are in the 



meta model layer M0. A model representation of the system is 
in M1. The meta models are described in layer M2. They define 
the concepts of the respective domains. The z-axis represents 
evolution, where different versions of the artifacts may exist in 
each cell. The arrows represent consistency relationships. Three 
types of consistency relations exist. Vertical consistency is the 
consistency between meta modeling levels. It is independent of 
the development domains. The vertical consistency between 
meta models and models is well understood and thoroughly de-
scribed [27, Chapter 5]. Approaches exist for validating and en-
forcing vertical consistency between M1 and M0 in the soft-
ware engineering domain. In previous work, we considered the 
vertical consistency between software architecture models and 
program code in the software engineering domain [28, 29]. 
Horizontal consistency is the consistency between artifacts of 
the same meta modeling level, independent from the develop-
ment domain. Mappings can be created between meta model 
elements (M2) of different domains, based on semantic interre-
lationships. These mappings can be used as the types for corre-
sponding mappings on the model level (M1). The real-world 
objects (M0) are very heterogeneous, and hard to grasp in a for-
mal context. Nevertheless, the consistency between these ele-
ments benefits from derived consistency relations. If formal 
consistency relations exist vertically between real-world ob-
jects and their model representation, then the consistency can 
be checked on the model level. 

 
Fig. 4. Coupling of artifacts in MDE for aMFSs in the proposed approach 

The consistency between different versions of artifacts (z-
axis) is the lateral consistency in Fig. 4. It has to be examined 
in dependency with the meta modelling level, and partly to the 
development domain. The evolution of real-world objects (M0) 
invalidates the consistency to the respective models, and to the 
interrelated real-world objects of the same development do-
main. The model representation (M1) of the real world objects 
has to be updated for certain changes in M0. E.g. when an 
aMFM is updated with a new functionality, the new functional-
ity has to be part of its model. Additionally, it might be neces-
sary to propagate changes to the other development domain. 
E.g. when a new functionality is modelled, the functionality has 
to be made “known” to the coordinating software. Changes in 
one model might require changes in other models to reestablish 

the consistency. When no abstractions exist in M1 for repre-
senting the necessary changes, it can become necessary to 
change the meta model (M2). Meta model changes can have a 
huge impact on the overall system, because the meta models are 
a shared resource for many other artifacts. Typically, extensions 
are possible with a small impact, but changes and deletions of 
elements are posing bigger challenges. At the meta modelling 
levels M2 and M1, evolution consistency relationships are in-
dependent from the development domain. We define three ma-
turity levels for handling the aforementioned consistency rela-
tionships: 1) Formal checks to ensure consistency concerning 
the introduced consistency relations exist (checking is done ei-
ther manually or automatically). 2) Differences between the 
views are highlighted by an automated validation. 3) Inconsist-
encies are automatically resolved. 

The following aspects should be modeled for aMFMs using 
domain-specific models from a software perspective: (a) Func-
tions describe how they interact with TUs. Examples are “scan” 
for a barcode scanner or “transport” for a roller conveyor. (b) 
Abstract states define a named configuration of the module. Ex-
amples are “transporting” or “stopped”, and “filled” or “empty” 
for a roller conveyor. (c) A context abstractly describes other 
aMFMs with which a module directly interacts, and which 
functions they provide or require. E.g. a roller conveyor has a 
predecessor from which TUs are taken and a successor to which 
a TU is given. For a given set of modules, elements of context 
models are semantically overlapping: When a roller conveyor 
A has a successor B, then A is the predecessor of B. Giving a 
TU from A to B is semantically equivalent to taking it from A 
for B. Context elements may have pre- and post-conditions as 
properties. E.g. a conveyor input of a specific conveyor variant 
assumes that a TU has a temperature 0°C < x < 100°C; its output 
guarantees a temperature of 0°C < x < 100°C for example in a 
cooling line for particle boards. 

AMFMs are composable. A composed aMFM consists of 
multiple interconnected instances of underlying aMFMs. They 
build more abstract functions and states. Elements of multiple 
context model instances can be coupled with each other by map-
ping elements. E.g. the output of one roller conveyor has to be 
mapped to the input of another. This composability is a key to 
handle large systems with a large set of models. 

Mappings also exist between composite aMFMs and their 
composed modules. E.g. Fig. 5 shows context models of the 
roller conveyor module a) and the belt diverter module b). A 
group of roller conveyors and a belt diverter build a diverting 
group. Part c) of Fig. 5 shows the internals of the group. Three 
roller conveyors and a belt diverter are instantiated, and their 
context is mapped, so that the output of a module is the input of 
another. The diverting group is a reusable composed aMFM. Its 
functionality is realized by the implementation and models of 
its composed modules. The group itself has abstract models 
which describe its functions, states, and context. Part d) shows 
a sketch of the context model of the diverting group, which 
hides the internal implementation. It can be used in different 
contexts without the necessity to change the implementation or 
model of the composed modules. The diverting group of the ex-
ample would have the function to divert or not divert a trans-
portation unit onto a second line. Its states contain “transport-
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ing”, or “stopped”. Its context has one predecessor and two suc-
cessors, one for each line. The mapping of context models can 
be used to ensure the consistency between aMFMs. Consistency 
rules can be defined over meta model elements of the context 
model of aMFMs. E.g. a conveyor input can be mapped to a 
conveyor output, given the pre- and post-conditions match. 

 
Fig. 5. Hierarchical view upon composed context models (excerpt of VSUM) 

Composed aMFMs in the presented approach are aMFMs 
themselves, so that they can be subject to composition. An ar-
bitrary number of description layers can be built this way. E.g. 
in the use case of Section III, the roller conveyors and belt di-
verters are basic aMFMs. The diverting group comprises three 
interconnected roller conveyors and a belt diverter. This group 
can be part of a more abstract aMFM ranging from the diverting 
group to the merging group in Fig. 1. The resulting composed 
aMFM can then be reused in similar systems, to implement a 
diverted line for manually checking TUs, and remerging them 
after fixing any errors. Analogously, the complete system of the 
use case can be an aMFM, that may be instantiated multiple 
times for reuse, probably as a module of a larger system.  

The model of a complete system can be built by creating and 
interconnecting instances of the top-most aMFMs. The mapped 
models can be merged virtually. A software that controls the 
material flow process can be developed based on the merged 
model as a virtual single underlying model (VSUM) [23]. The 
VSUM is not a separate model, but interconnects the models of 
the aMFS. It describes the functions, states, and context of the 
overall system. Fig. 5 shows an excerpt (a view) upon the 
VSUM of the given use case. The meta model of the VSUM is 
the set of the meta models of its models, with mappings as de-
scribed above. It is called virtual single underlying meta model 
(VSUMM) [23]. 

The coordinating software is implemented using a process-
oriented modeling language such as BPMN [30]. It defines and 
monitors the material flow. The activities and decisions of the 
process models are mapped to functions and states of the 
VSUM of instantiated aMFMs. The process model therefore 
contributes to the VSUM(M). This mapping of process and 

functions/states can be used to ensure the consistency between 
process and system.  

VI. DEVELOPMENT AND EVOLUTION WITH COUPLED 

(META) MODELS 

Using the described MDE method, the (top-down) develop-
ment of an aMFS consists of the following stages: First the ma-
terial flow must be planned and described in a requirements 
document. Then the system can be assembled on a model-level 
by reusing aMFMs from a catalogue or defining new aMFMs 
where necessary. The elements of the context models must be 
mapped to each other for all aMFMs. This is not necessary for 
the children of reused composite aMFMs, because the instanti-
ation and mapping is already included in the composition. The 
consistency rules must be preserved by the final mapping. A 
process model must be created that defines the material flow, 
and its activities must be mapped to functions and states of the 
system model. Program code for the PLCs and the process im-
plementation can be generated and adapted to the specific needs 
of the process. 

The presented module-oriented approach of MDE supports 
on-site evolution. An on-site evolution (here usually regarded 
as bottom-up process) consists of the following stages: An 
expert (e.g. a development engineer from the domain of aMFS) 
changes the system’s hardware or software on-site. The 
engineer adapts the models of the affected aMFMs, to make 
them consistent with the system changes. The engineer defines 
new versions of the aMFMs with changed hardware, code, or 
models. In the VSUM, the consistency between the models 
must now be re-evaluated. Consider the example system, where 
a belt diverter module is replaced on-site with a module, that 
has an additional light barrier, as described above. The hard-
ware, program code, and model of the diverting group is up-
dated, and a new version of the module is defined. The updated 
diverting group can now be in an additional state, that indicates 
a stuck TU. This state has to be considered by the coordinating 
software. These differences are detected by consistency rules, 
e.g. implemented with model checking algorithms, model-
transformations, and program code parsers/generators. To sup-
port reuse, the new version of the aMFM should be registered 
in a catalogue. In addition, even “simple” code maintenance e.g. 
substituting old program code by new less faulty one can be 
addressed here as well. Given a modular structure, limited 
model checking of only the relevant code slices can be used to 
check the compatibility of the changed code with the rest of the 
module’s interior and the result of a correction / change can be 
traced as well to expose possible desired / undesired 
interactions with the rest of the system. 

This style of aMFMs makes the reuse of basic and compo-
sitional modules easier to achieve. It increases the reusability of 
aMFMs and the evolvability and maintainability of aMFSs. The 
requirements stated in Section I are fulfilled as follows: (R1) 
The approach explicitly describes modules, that contain com-
posed mechanical/electrical hardware, models, and program 
code. (R2) Modules in the approach are composable on arbi-
trary levels. These modules can be reused in other contexts. 
(R3) The consistency between different models is handled with 
the notion of the VSUM. I.e. semantically associated model el-



ements can be mapped to each other with consistency preserv-
ing rules. (R4) The code is considered a part of the VSUM. 
Consistency rules exist to create or adapt program code from 
(changed) models, and to create models from program code. 

VII. CONCLUSION AND FUTURE WORK 

In this paper we presented a novel approach of model-driven 
engineering for aMFSs. The presented approach aims at in-
creasing the reusability and decreasing the error-proneness of 
current development approaches by defining aMFMs. AMFMs 
comprise hardware, program code, and models that describe 
their functions, states, and abstract context. Composite aMFMs 
and complete systems can be defined by instantiating aMFMs 
and mapping their context model elements to each other in ac-
cordance to consistency rules. When such a system evolves, the 
changes are propagated to the models of new variants of aM-
FMs, and the consistency is re-evaluated. Changed aMFMs are 
made available for reuse, to benefit from the knowledge gener-
ated in production. 

In future work, we plan to automate the propagation of 
changes in a system towards the models. The mapping between 
context elements of aMFMs can be automatically created by 
communication between the aMFMs. The model of the com-
plete system can then be updated automatically and can be 
checked against its consistency rules. The new functions and 
states can be made available to the process implementation. 
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