
Chapter 9
Maintaining Security in Software
Evolution

Jan Jürjens, Kurt Schneider, Jens Bürger, Fabien Patrick Viertel,
Daniel Strüber, Michael Goedicke, Ralf Reussner, Robert Heinrich,
Emre Taşpolatoğlu, Marco Konersmann, Alexander Fay,
Winfried Lamersdorf, Jan Ladiges, and Christopher Haubeck

J. Jürjens (�) · J. Bürger · D. Strüber
Institute for Computer Science, University of Koblenz-Landau, Koblenz, Germany
e-mail: juerjens@uni-koblenz.de; buerger@uni-koblenz.de; strueber@uni-koblenz.de

K. Schneider · F. P. Viertel
Institute of Software Engineering, Leibniz Universität Hannover, Hannover, Germany
e-mail: kurt.schneider@inf.uni-hannover.de; fabien.viertel@inf.uni-hannover.de

M. Goedicke
paluno – The Ruhr Institute for Software Technology, Specification of Software Systems,
Universität Duisburg-Essen, Essen, Germany
e-mail: michael.goedicke@s3.uni-due.de

R. Reussner · R. Heinrich
Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany
e-mail: reussner@kit.edu; robert.heinrich@kit.edu

E. Taşpolatoğlu
Department of Software Engineering, FZI Forschungszentrum Informatik, Karlsruhe, Germany
e-mail: taspolat@fzi.de

M. Konersmann
Institute for Software Technology, Research Group Software Engineering, Universität
Koblenz-Landau, Koblenz, Germany
e-mail: konersmann@uni-koblenz.de

A. Fay · J. Ladiges
Institute of Automation Technology, Helmut Schmidt University, Hamburg, Germany
e-mail: alexander.fay@hsu-hh.de; jan.ladiges@hsu-hh.de

W. Lamersdorf · C. Haubeck
MIN-Faculty, Department of Informatics, Distributed Systems, Universität Hamburg, Hamburg,
Germany
e-mail: lamersd@informatik.uni-hamburg.de; haubeck@informatik.uni-hamburg.de

© The Author(s) 2019
R. Reussner et al. (eds.), Managed Software Evolution,
https://doi.org/10.1007/978-3-030-13499-0_9

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13499-0_9&domain=pdf
mailto:juerjens@uni-koblenz.de
mailto:buerger@uni-koblenz.de
mailto:strueber@uni-koblenz.de
mailto:kurt.schneider@inf.uni-hannover.de
mailto:fabien.viertel@inf.uni-hannover.de
mailto:michael.goedicke@s3.uni-due.de
mailto:reussner@kit.edu
mailto:robert.heinrich@kit.edu
mailto:taspolat@fzi.de
mailto:konersmann@uni-koblenz.de
mailto:alexander.fay@hsu-hh.de
mailto:jan.ladiges@hsu-hh.de
mailto:lamersd@informatik.uni-hamburg.de
mailto:haubeck@informatik.uni-hamburg.de
https://doi.org/10.1007/978-3-030-13499-0_9

208 J. Jürjens et al.

The engineering of security-critical software systems faces special challenges
regarding evolution. Even if a substantial effort went into ensuring security during
the system’s initial development, it is uncertain if the system remains secure
when changes to the software, the execution platform, or the system environment
occur. Relevant changes that might endanger security include new or evolving
system requirements, changing laws, or updated knowledge regarding attacks and
mitigations. Failure to keep up with such changes can lead to substantial breaches
and losses, highlighting the need to actively maintain an established level of security
[And08].

For preserving security in long-living systems, ongoing and systematic support
for the evolution of knowledge and software is required. Reflecting the guiding
theme Methods and processes for evolution of the priority program, there is a
need for techniques, tools, and processes to support the evolution of systems in
order to ensure lifelong compliance with security requirements. These techniques,
tools, and processes need to address two main challenges, as outlined in the chapter
“Challenges” of this book:

1. How can security knowledge, available via diverse non-formal sources, be
incorporated and utilised for long-living system design? Establishing security
depends on given security knowledge, which may only be available in a non-
or semi-formal textual form. Whenever the security knowledge changes, earlier
assumptions about the security of the system may no longer hold true; the system
needs to be re-evaluated and adapted with regard to the security requirements.

2. How can developers and security experts be supported to react to context
evolution that may compromise the system’s security design or compromise the
system at run time? New available security knowledge, as well as suspicious
behaviour in the running system, may rely on a human developer for diagnosis
and hardening. These human stakeholders can be assisted by providing them
with appropriate information, for example about a relevant security pattern or
behaviour violation.

To address these challenges, we present a suite of approaches that contribute
to a three-layered framework (Fig. 9.1). On the bottom layer, developer, system,
and environment activity is monitored. Usually, this activity is monitored in a non-
invasive manner, for example by logging executed methods using a framework
such as Kieker [VWH12] or in case of a production system by monitoring input
and output signals [Hau+14a]. At this level, results from model-based security
testing can be exploited (such as [JW01]). Additional aspects of human behaviour
might be considered as well. On the middle layer, collected monitoring data are
analysed in various ways: It is important to identify deviations of monitored
behaviour from expected behaviour. Since there are different sources and types of
expectations, the details of each analysis may differ. Assumptions associated with
design patterns will be investigated in a different way than expectations held about
user interaction. At this level, approaches such as model-based security analysis can

9 Maintaining Security in Software Evolution 209

Conclusion making

Data analysis

Monitoring

Security modeling
and analysis framework

informs

informs

Software system
at design time and/or run time

Architects and
Developers

Environment

develop

interact

adapts

monitors

advises

Fig. 9.1 Overview of a three-layered framework for maintaining security in software evolution at
design time and run time

be used (such as [Jür01]). On the top layer, conclusions are derived. Warnings, hints,
or technical adaptations are generated and released in order to preserve security,
using approaches such as the SecReq approach to security requirement engineering
[Sch+12].

In this chapter, we present a suite of five approaches that employ the above-
mentioned framework. In combination, the approaches address all identified chal-
lenges for security maintenance at design time and run time. The first two
approaches focus on the design time. The first approach (presented in Sect. 9.2) uses
knowledge extracted from natural-language documents to identify potential steps for
co-evolving the system design. The second one (Sect. 9.3) is on integrating archi-
tecture model information with program code. It creates a bidirectional mapping
between model elements and code structures to automatically structure program
code so that it contains model-based security properties and therefore survives code
evolution. The third approach (Sect. 9.4) bridges design time and run time to support
architects as the software evolves. It formally documents contextual information
gathered from run time in architectural models at design time. Architects use model-
based catalogues containing several security-related elements like attack types or
security patterns, which are exploited as a lightweight metric for an architectural
security analysis. The two remaining approaches focus on run-time security main-
tenance. The fourth one (Sect. 9.5) monitors run-time information in order to detect
suspicious behaviour, which is reacted to automatically by adapting the system with
mitigation measures. The fifth one (Sect. 9.6) focuses on interdisciplinary changes
in automation software. It compares actual observed behaviour with intended
behaviour expressed in signal-based models to find behaviour anomalies during run
time.

Having presented these five approaches in detail, the chapter concludes with
a discussion of how each approach contributes to addressing the challenges
(Sect. 9.7).

210 J. Jürjens et al.

9.1 Foundations

Modelling, Meta Modelling, and Model-Driven Software Development A
model can be seen as an abstraction of a subject. An example for models can
be mathematical formulas that describe the reality while ignoring factors that
are irrelevant for the use case. Models of software are often represented as
interconnected elements, for example structural models or behavioural models
of the Unified Modeling Language (UML). Modelling is the activity to create
models.

Meta models define a language for modelling. This means the elements where
models are built from and how they can be connected. Thus, meta models define
the abstract syntax of models that comply with the meta model. A model that
complies with a meta model is called an instance of the meta model. Classically,
the key concepts behind meta modelling are the relationship between a model
element (often called object or instance in this context) and its meta-model element
(classifier or class) and the ability to navigate from an object to its classifier.
Multiple levels of instance-of relationships are possible, where the classifier of an
object is itself the instance of a “higher level” classifier. Two meta levels mean that
one level of objects and one level of classifiers exist. An arbitrary number of meta
levels is possible, although typically two to four levels are used [Obj16, Section 7.3].
Instance-of relations in meta modelling build directed acyclic graphs, which build
a hierarchy. In this context, we do not explore further the generalisations made by
deep modelling [AG12].

Meta modelling is the activity to create meta models. This can follow a top-down
or a bottom-up approach. Top-down meta modelling means to define a meta model
for a subject to model and to create models afterwards. Bottom-up means to derive
a meta model out of a modelled subject to classify the already modelled elements.

Model-driven software development (MDSD) [SVC06] uses models as central
artefacts for software development activities. In MDSD, parts of the software are
described using models that comply to domain-specific meta models [Mar10]. These
domain models are refined with detailed technical models that are relevant not to
the domain but to the platform that will run the software. Such models are the
basis for automated code generation. The generated code has to be enriched with
implementation details.

9.2 Design Time: Leveraging Knowledge from Natural
Language for Design-Time System Adaptation

In this section, we present an approach to leverage knowledge from natural language
for design-time system adaptation. This approach was developed in the SecVolution
project within the priority program. To address the challenges overviewed in the

9 Maintaining Security in Software Evolution 211

introduction, the key idea is to maintain a knowledge base that collects knowledge
about security concepts and instantiations within the given software system. Using
this knowledge base, we can react to vulnerabilities occurring during evolution,
such as changes in requirements, knowledge, or other environmental aspects. The
knowledge base contains information on how to deal with a triggering change in
order to preserve security. A semi-automated mechanism uses the knowledge base
to update the system models.

The SecVolution approach harnesses formal design artefacts available in the
regular development process, such as UML-based system models. However, many
of the monitored sources of change and evolution are informal. In particular, we
need to deal with artefacts on the requirements side, which include natural-language
documents like the system’s requirement specification or laws. To this end, we
developed socio-technical methods for supporting elicitation of relevant changes
in the environment. Like in our previous works (confer [Sch06, Sch09, Pha+13,
AKK14]), the relevant knowledge is captured during regular development tasks
with as little extra burden for the security expert as possible. Steps for restoring
security are integrated into existing tasks as well and aimed to be as unintrusive as
possible. By avoiding additional tasks and assignments and by keeping extra-effort
low, acceptance by developers and security experts is increased and chances rise for
effectively applying the SecVolution approach.

The approach can be applied to existing (long-living) software systems for which
this information can be provided.

9.2.1 Overview

The overall design-time approach developed in SecVolution is shown in Fig. 9.3.
It uses the FLOW notation [SSK08] (summarised in Fig. 9.2) to visualise the
information flow within, and to highlight important aspects of, the SecVolution
approach. FLOW is used in Figs. 9.3 and 9.19. Relevant aspects of a FLOW model

<Person or Role>

<Document name> <Information type>
(optional)

<Information type>
(optional)

<Experience>
(optional)

<Experience>
(optional)

<Name of Activity>

<Control, support>

<In- / out-going
information>

solid

fluid

State Information Information Experience Activity
Store Flow Flow

Fig. 9.2 FLOW notation symbols according to Schneider et al. [SSK08]

212 J. Jürjens et al.

Fig. 9.3 Overview of the SecVolution design-time approach using the information flow syntax
described in Fig. 9.2

include the fluid/solid state of information, the route of information, and the role of
experience as a cross-cutting type of information:

• Document symbols and solid arrows represent documented project information
or knowledge. That knowledge can be retrieved at any time without the need to
involve the author.

• Faces and dashed arrows symbolise direct communication, for example in
meetings, conversations, phone calls, or emails. This type of information rep-
resentation is called fluid in FLOW [SSK08], as opposed to the solid information
in documents and artefacts

• Rectangles represent activities with certain incoming and other outgoing infor-
mation flows. As a black box, the internals of an activity are hidden. They may
be detailed by another FLOW diagram.

• Project-specific information (in black) is attached to the left and right of an
activity, whereas control and support enter from top and bottom of the activity
rectangles.

• Grey colour indicates knowledge and experience. They are more generic than
project-specific information and, thus, can be reused in other parts of the system.

In the following, we present the main process of SecVolution based on Fig. 9.3.
The left part of Fig. 9.3 shows various sources of relevant knowledge. These are
monitored for changes relevant to the approach. For deciding which information
is relevant, Natural Language Processing methods are used to retrieve information
from natural-language sources (Sect. 9.2.2). The monitored data is then split into
three types:

• Ordinary requirements, which do not have any security relevance. These can be
forwarded to the ordinary development process.

• New or evolved Essential Security Requirements. These are requirements that
define basic security-relevant requirements for the system like “Use secure
encryption algorithms”.

9 Maintaining Security in Software Evolution 213

• Information relevant for the security knowledge base, the Security Context
Knowledge. This context knowledge is necessary to annotate the system model
with concrete security requirements, for example a concrete encryption algorithm
and appropriate key length.

The security knowledge base constituted by the Security Context Knowledge
(SCK) requires a suitable representation, which we provide by using ontologies
(Sect. 9.2.3). Security Context Knowledge and Essential Security Requirements
both are managed within the Security Maintenance Model. Updating the Security
Maintenance Model can make design decisions necessary, for example introduce a
new cipher family because attacks have become known.

Security Maintenance Rules (SMR, Sect. 9.2.4) are the final part of the Security
Maintenance Model. They decide if an evolution of the knowledge given by Secu-
rity Context Knowledge and Essential Security Requirements makes co-evolution
necessary. Figure 9.4 describes the overall idea and relationship between evolution
and co-evolution. The development of a system model is accompanied by Security
Context Knowledge. At its initial design, the system model was compliant with
regard to the security knowledge that was current then. Over time, the Security
Context Knowledge evolves. The system model now has to be co-evolved so that
the then evolved system model is compliant with regard to the updated security
knowledge.

Time

Security Context Knowledge

System Model

evolution

evolution

C
o-

Ev
ol

ut
io

nSecurity
Analysis

Security
Analysis

Essential
Security
Require-
ments

Essential
Security
Require-
ments

Security Context Knowledge

Model

Fig. 9.4 Basic idea behind the design-time adaption, shown by the relationship of evolution to
co-evolution

214 J. Jürjens et al.

When required, co-evolution is carried out by using generic security knowledge
and specific impact information derived from Security Maintenance Model by
means of heuristic techniques. To express security requirements in the system
design, the UMLsec approach [Jür05] is used. UMLsec provides a profile for
UML that allows annotating UML models with security requirements, assumptions,
and potential attackers. It also provides checks that determine if certain security
requirements are satisfied by a given system model.

9.2.2 Capturing Security Requirements Using
Natural-Language Processing

Requirements (e.g. in a specification) can be relevant for security. For example,
requirements referring to buying something on the Internet may be more security-
related than buying something in cash in a local store. Usually requirements are
written in natural language so that everybody involved in a project is able to
understand and review them. This refers to requirement engineers, developers,
customers, and possibly managers. It is highly unlikely that they would learn a
special language to understand requirements and check them for security relevance.
The voluminous specifications of long-living software systems cannot be effectively
screened manually by experts. Our approach provides an automated identification
of requirements that are most likely security relevant. This identification starts from
requirements in natural language, which can be ambiguous and imprecise. It makes
use of the knowledge on security from several sources, including human experts
and documented guidelines (Fig. 9.3). Heuristic automated support can reduce the
load on human experts substantially. The final goal is to focus their attention and
valuable time to the most security-relevant requirements.

To cope with problems of natural language and to semi-automate this process,
we perform a linguistic approach to identify the semantic similarity of words.
Two words have a high semantic similarity if they have the same meaning with
simultaneous syntactical difference [Sch94a]. A numeric value identifies the level of
semantic similarity of words. For the security assessment of requirements, we use a
heuristic reasoning technique, which is based on Natural Language Processing. The
heuristics and the calculation of the similarity value are described in more detail in
Sect. 5.3. In this chapter, the security knowledge itself is seen as tacit knowledge
of developers. In some cases, they also have a feeling of the security relevance of
requirements, but sometimes they cannot explain the reason of the decision that a
requirement is security related or not.

If the value of similarity is above a predefined threshold, the term is considered
security related. In general, this method uses Security Context Knowledge of the
knowledge base to determine about the security relevance of a requirement. The
knowledge base is a hierarchical-structured ontology containing security-relevant

9 Maintaining Security in Software Evolution 215

words, which is introduced in Sect. 9.2.3. Security knowledge changes over time,
such that it is necessary to keep it up-to-date by domain and security experts.

The security relevance of words is domain specific. In some domains, a word
can be classified as non-security related; in another domain, it is highly security
dependent. For example, on the one hand if we speak about a park in general,
a bank is a place to sit down for multiple people. In this context, it is not a
security-related word. On the other hand, in the context of Common Component
Modeling Example (CoCoME) as online shopping platform, the word bank with
the same syntax has a different semantic meaning. It refers to a company where
customers can store their money and transfer it to another owner. The bank details of
customers are highly security dependent. To handle this type of context ambiguity,
our knowledge base must be enriched by domain-specific knowledge. If a term,
which is into the knowledge base and in a requirement, has a linguistic dependency
to another term, the requirement engineer is questioned whether the two terms mean
the same. By similar meaning of the terms, the knowledge base will be enriched by
the new security-relevant term. For example, in the requirement “The user enters
an identification number and a PIN”, PIN is a security-related term. Through the
linguistic dependency between PIN and identification number, the requirement
engineer is questioned whether the two terms mean the same. We interleaved the
semi-automated acquisition of knowledge enrichment into the security assessment
of requirements. The knowledge acquisition and the heuristics are described in
detail in Sect. 5.4.3. In Fig. 9.5, the enrichment of the knowledge base through a
requirement engineer or a security expert, for example in the context of linguistic
dependencies, is visualised. The requirement engineer has to make a decision about
the security relevance of words with linguistic dependencies. The approach takes
advantage of the collected knowledge described in Sect. 9.2.

The user enters an identification number and a PIN.

Linguistic Dependency
Security related?

NLP

Yes

No

Security Expert

Classified Requirements

Knowledge Base

Similarity Check

The user enters an identification number and a PIN.

Fig. 9.5 Natural language processing approach—enrichment of security knowledge

216 J. Jürjens et al.

9.2.3 Representing Security Knowledge Using Ontologies

The security context knowledge mined from the various information sources needs
a suitable representation that is storable, updatable, and flexible enough to support
different levels of abstraction and uncertainty. Specifically, security issues cannot
be foreseen at system design time and are considered unknown unknowns [MH05].
Thus, a suitable knowledge representation that can be adapted to entirely new fields
of knowledge is required. To this end, we use the knowledge representation concept
of ontologies [Gru93]. An ontology contains the key concepts of a domain and the
relationships between them. Our technical realisation of ontologies is based on Web
Ontology Language (OWL), a standard ontology representation format [OWL09].

Software systems tend to get complex. Consequently, the knowledge necessary
to ensure security during its life span grows accordingly. To support the handling
of complexity and the sharing of knowledge between different projects within the
same domain, the ontologies in our approach have three layers. We work with
nested ontologies that include, for example, an upper ontology of general security
concepts; a domain ontology of system-independent, domain-specific knowledge;
and a system ontology of system-specific knowledge.

• We provide a generic upper ontology that is independent of a particular software
domain or application. It represents the most general software security concepts,
such as “encryption algorithm” and “attack”. To identify these concepts, we
performed a basic literature study [S G+14], followed by a more detailed
systematic literature review (SLR, [Gär16, Bür+18]). SLR is an empirical method
used to aggregate, summarise, and critically assess all available knowledge on a
specific topic [KC07]. Figure 9.6 shows the resulting upper ontology, providing a
taxonomy to define a system, its usage, and the surrounding security knowledge.

• Domain ontologies allow domain knowledge, as well as concrete security issues
and measures, to be captured’ for example, the encryption algorithm “DES”
is subject to a specific attack called “Davies’ attack”. Domain ontologies
(illustrated below) have to be created for each domain anew and can be shared
by different systems in the same domain.

• System ontologies express security-relevant knowledge about a concrete system,
for example that a specific banking system uses “DES” as its encryption
algorithm. These system ontologies can be produced from existing artefacts, such
as a UML-based system model.

Figure 9.7 illustrates an evolution step of the domain and system layers of a
nested ontology. Class data are considered an asset of a system; thus, data are
a subclass of class Asset. The domain level initially provides the information
that data are to be further distinguished into anonymous data and personal data.
Furthermore, the salary of an employee has to be considered personal data. Personal
data is split into two further categories, and the individual faith is added. The
evolution step is inspired by a refinement regarding privacy, in accordance with the
German federal data protection law (Bundesdatenschutzgesetz, BDSG). Between

9 Maintaining Security in Software Evolution 217

Fig. 9.6 Upper ontology for security

anonymized
data

anonymized
data

anonymized
data

critical
personal data

Adaptation Adaptation

Domain data

personal data

salary

data

3rd party

salary

1st/2nd party

faith

data

data

salary

?
anonymized
data personal data personal data

personal data

System

Adaptation Adaptation

E
V
O
L
U
T
I
O
N

Fig. 9.7 Example of ontology layering and evolution

the 1990 and 2001 revision of the law [J B+15, Ruh+14a, Bür+18], an additional
notion of critical personal data has been added, which leads to a change of the
involved domain layer. Immediately, the question arises how we can adapt the
system layer to be consistent with the domain layer again. This question leads us
to model co-evolution, as discussed in the next section.

218 J. Jürjens et al.

Reactions

SMR
ESR

potentially
violated ESRs

allocation

Δ SCK

Rule patch.insecureLinks.secureEnv.1

Graph Transformations

Instructions

Java code

ESR

ESR

ESR

SMR

SMR

Rule patch.insecureLinks.secureEnv.1
Rule patch.insecureLinks.secureEnv.1

«preserve»
link:CommunicationPath stereo2_d:Internet

«delete»«delete»

base_CommunicationPath

base_CommunicationPath

«create»

«create»

stereo2_c:Internet

Fig. 9.8 Overview of SecVolution’s co-evolution methodology

9.2.4 Rule-Based Model Co-evolution

Whenever the environment changes, the monitoring component may produce a
corresponding change of the Security Context Knowledge, written as �SCK . Each
change is analysed and, when necessary, used to produce reactions based on the
process shown in Fig. 9.8.

First, in a step called allocation, we determine which Essential Security Require-
ments (ESRs) are potentially violated. This allocation is given by a mapping and can
be supported, for example, by detailed information, where the �SCK occurs, that is
relationship to specific elements of the upper ontology like encryption. To check if
the system indeed is impacted by one or more flaws, the system model is investigated
using model queries as given by the Security Maintenance Rules (SMRs). To express
the model queries, we use model transformation technology, building on the model
transformation language and framework Henshin [Are+10]. A system model can
be interpreted as a graph. For instance, a class can be interpreted as node and the
reference to another class can be interpreted as an edge. Thus, graph transformation
techniques can be used to investigate and manipulate system models [JJS15]. A
single graph transformation typically consists of two graphs, one called the left-
hand side (LHS) and the other called the right-hand side (RHS). Whenever the LHS
is matched to a given model, the matched parts are transformed according to the
RHS. Elements can be added, removed, or preserved. LHS and RHS are connected
through a mapping. Typically, a set of graph transformation rules is called a graph
grammar. In Henshin, a number of graph transformation rules are encapsulated by a
transformation model.

We implement model queries as rules in which the LHS equals the RHS. Thus,
no changes to the model are made, but we can make use of the underlying matching
algorithm. We use Henshin since it is built on EMF [Ecl], a standard platform to
model software, and it allows us to specify change actions, as required for the next
step.

9 Maintaining Security in Software Evolution 219

To carry out the co-evolution, Security Maintenance Rules is used. To support
this step appropriately, a Security Maintenance Rule consists of three parts:

• A link to �SCK

• A precondition that the model needs to fulfil for the Security Maintenance Rule
to be applied

• A series of reactions to realise the actual co-evolution

The reactions itself can be of three different types, as shown in Fig. 9.8. The most
formal way is using model transformations to directly alter the system model. Where
model transformation approaches like Henshin fall short, for example complex
clone operations or path-based analyses, reaction steps can be supported by Java
code. Finally, showing the security expert (textual) instructions is meant as basic
support for vulnerabilities, which additionally require reactions regarding a system’s
data or implementation (e.g. user passwords).

Using the partial match feature of Henshin, the application of co-evolution steps
can be simplified [JJS15, J B+15]. For example, model queries or evaluation of
preconditions provide links to concrete model elements of the system model for
the transformation rule, that is EMF node instances. These instance links are used
to populate the transformation rules, which in turn alter the system model. Using
this technique and by additionally utilising the flexibility of Henshin transformation
rule EMF objects, our rules actually need fewer elements and can be used in
a flexible way. This helps to keep the set of transformation rules low and their
understandability high. The co-evolution steps are applied semi-automatically. The
security expert can be asked to make design decisions, that is choose an encryption
algorithm to replace the now insecure one. Additionally, instructions can be given
to the expert, for example “All users have to pick a new password”.

9.2.5 Related Work

Natural Language Processing of Security Requirements Compagna et al.
[Com+08] integrate legal patterns into a requirement engineering methodology
for the development of security and privacy patterns using neuro-linguistic
programming (NLP). The pattern design and validation process requires legal
experts to describe patterns in natural language. This description is parsed by
a natural language processor on the basis of a semantic template. Gegick and
Williams [GW07] developed a methodology for the early identification of system
vulnerabilities for existing threats. While in our approach we use suspicious
sequences to encode hypotheses of possible attack patterns, they use Regular
Expressions to encode attack patterns extracted from different web-based security
vulnerability databases. A catalogue of such patterns is supplied to map the
threat types to elements in the system model. By using a linguistic approach,
the requirement engineer can concentrate on the domain-specific problem rather

220 J. Jürjens et al.

than modelling it formally. Thus, natural language provides a more flexible notation,
and changes can be managed more efficiently.

Haley et al. [Hal+08] present a framework not only for security requirements
elicitation but also for security analysis. Their method is based on constructing a
context for the regarded system. Describing this context with a problem-oriented
notation makes it possible to validate the system against the security requirements.
The approach is powerful but needs a lot of security expertise to build the context
and understand the results of the analysis. Evolution of the context is not supported.

9.2.6 Leveraging Security Knowledge to Infer Adequate
Reaction to Context Changes

Tsoumas and Gritzalis [TG06] provide a security-ontology-based framework for
enterprises linking high-level policy statements and deployable security controls.
Security ontology is built by extending the Distributed Management Task Force
(DMTF) Common Information Model standard. In contrast to our approach, it is
focused on organisational controls like how to secure server hardware, recommen-
dations for configuration of intrusion detection systems, and so on.

Ernst et al. [EBM11] use a formal description language to relate requirements
to their implementation. Changes identified in the requirement specification are
then used to trigger software evolution. The approach is rather formal and aims
at providing a graph-based guidance for implementation rationale. Co-evolution is
not considered so far, as well as an interface to system design level.

The Water wave phenomenon inspired Li et al. [Li+13] to develop an impact
assessment approach based on call graphs. First, they analyse the core, which
consists of the direct affected software artefacts. After that, the call graph is
analysed, taking the interference of different changes into account. Their approach is
focused on predicting how big (in terms of number of methods to change) the impact
of changing a number of methods in a given source code project will be. Contrary
to this, our approach aims at analysing impact regarding security properties.

9.2.7 Summary

In this section, we presented three contributions. First of all, we introduced system-
atic and experience-based elicitation and management of multiple, heterogeneous
knowledge sources throughout the life cycle of a long-living system. This is
considered a fundamental step in the process of overcoming the multitude of
information sources for the sake of leveraging it do manage long-living systems. As
soon as the knowledge has been elicited and structured, it needs to be investigated
to assess the effects on a system’s security. Thus, as a second contribution, we

9 Maintaining Security in Software Evolution 221

introduced a systematic analysis and optimisation of deciding how new knowledge
affects the security of long-living software systems. After all, knowledge and
reasoning made about the system’s security is an additional challenge so that we
showed, as a third contribution, how to maintain a consistent database of security
requirements and security-relevant environment knowledge during evolution of a
long-living information system.

The three core challenges tackled by the SecVolution design-time approach are
related to the first challenge, as introduced in the chapter’s preface (How can
security knowledge, available via diverse non-formal sources, be incorporated
and utilised for a long-living system design?). A process for elicitation of various
knowledge sources is provided, which is able to deal with ever-changing knowledge
that long-living systems are confronted with. Maintaining a database of security
knowledge during evolution contributes to the second challenge (How can devel-
opers and security experts be supported to react to context evolution, which may
compromise the system’s security design or compromise the system at run time?).
Developers are provided a consistent knowledge base that can be kept up to date
when facing context evolution. The SecVolution design-time approach is focused
on typical design-time development artefacts like UML models.

The SecVolution design-time approach has made the following contributions
in detail. We developed a security assessment technique for supporting the main-
tenance of long-living information systems independent of the process model,
domain, or technology in use [S G+14]. We created a core ontology usable for
different security areas (e.g. privacy, information flow, attacker model) [Bür+18],
as well as techniques for reusing and structuring the knowledge-modelling process
[Ruh+14a]. We used UML profiles to define extension points in the models that
are connected to the knowledge. For the case of an initially secure system, we
developed a model-based security verification strategy [S W+14] that can efficiently
determine whether a particular co-evolution restores security requirements that were
satisfied before the evolution [Bür+18]. The strategy is supported by an extensible
tool platform, CARiSMA, [Ahm+17] that reads the annotations of UML 2 models
and computes a delta model containing all possible evolution paths of the given
model. We presented an approach [JJS15, J B+15, Bür+18] in which changing
security knowledge is analysed and possible reactions are derived. It also covers
newly occurring knowledge about security issues or attacks.

9.3 Integrating Model-Based Security Constraints
with Program Code

The reliability of security analyses is crucial for effective security strategies
in long-living software systems. Figure 9.2 uses Unified Modeling Language
(UML) profiles to define security information in models. One kind of model to
which security information can be attached is architecture models, which usually

222 J. Jürjens et al.

describe components and their interconnection. This information can be used
for architecture-based security evaluations. These evaluations are only reliable as
long as the architecture implementation is consistent with the architecture models.
This consistency can be invalidated via multiple influence factors during the life
cycle of a long-living software system: (1) The program code evolves, so that
it is no longer consistent with the security models. (2) Security models may be
based on architecture models. When the underlying architecture models evolve,
the architecture-based security model is inconsistent with the actual architecture.
In both cases, the analysis models must be changed accordingly and the security
analysis must be repeated or adapted, or the results of the security analysis might be
invalid.

In this section, we present an approach to create a continuous consistency
between architecture model information, architecture-based security information,
and the program code. The approach has been developed as a part of the ADVERT
project within the priority program. It addresses the challenge to document security
information so that it is strongly related to the program code, to support the analysis
and monitoring of security aspects.

9.3.1 Codeling: Integrating Architecture Model Information
with Program Code

A set of abstract concerns commonly agreed upon seems to exist for defining
software architectures, as manifested by the standard ISO/IEC 42010 [ISO11b].
These include the general structure of a system, usually expressed in components,
interfaces, and their interconnection. They are often accompanied by abstract
behaviour descriptions or quality aspects. During the development of software,
the architecture is realised in the software artefacts, including the program code,
configuration, and the use of existing platforms. The goal of the implementation
is an executable system. The implementation of software architecture is driven by
industry standards and platforms that define standard elements such as compo-
nents and interfaces. Languages for architecture specification and for architecture
implementation have common concerns (see, e.g., [MBG10]), typically at least the
definition of components, interfaces, and their interconnections. However, they have
different foci and include different types of architectural design and different details
added to the architectural description.

The tool Codeling [Kon18, Kon16] creates a systematic mapping between
architecture specification model elements, relations, and attributes and their imple-
mentation based on standardised or project-specific architecture implementation
languages. These mappings specifically define places where arbitrary other code can
be added. This kind of mapping allows to extract architecture specification models
from program code and to propagate changes in these models back to the code.

9 Maintaining Security in Software Evolution 223

Fig. 9.9 The parts of Codeling for integrating architecture model information with code

Codeling comprises three parts. Figure 9.9 sketches an overview of these parts
and their relations. The figure describes artefacts of the approach with rounded
boxes and translations between these artefacts with arrows. The parts are used to
bidirectionally translate between program code and a specification model expressed
in an architecture specification language. The parts are underlined in Fig. 9.9.
(1) An Intermediate Architecture Language (IAL) mediates between architecture
implementation models and architecture specification models. The IAL has a small
core with the common elements of architecture languages. The core is extended
with a variety of stereotypes to represent, for example, different kinds of interfaces,
component hierarchies, or quality attributes. Models expressed in the IAL are
called translation models. (2) The Model Integration Concept (MIC) describes an
approach for bidirectional formal mappings between program code structures and an
implementation model expressed in a meta model of an architecture implementation
language. As an example, a Java-type declaration that implements a specific
marker interface might represent a component, and static final fields within this
type declaration represent attributes of this component. In Codeling, the program
code also contains information that is not part of an architecture implementation
language but is only subject to a specification language. For example, many
architecture implementation languages do not describe hierarchical architectures.
The hierarchy information can be annotated in the program code. The translation
model is enhanced with this information from the code using the Model Integration
Concept. (3) Bidirectional architecture model transformations translate between
implementation models, translation models, and specification models.

With the tool Codeling, architecture model specifications are integrated with
program code. The models can be embedded into and reliably extracted from the
code, leaving only the program code as single underlying model.

224 J. Jürjens et al.

9.3.2 Application: Security Evolution Scenario

The running example within this section is CoCoME (see Sect. 4.2), a common
case study for software architecture approaches. Figure 9.10 shows a subset of the
CoCoME architecture expressed in the UML. In the running examples, three user
roles interact with the system. Cashiers scan items at a cash desk and execute the
sales process. Store Managers manage the store’s inventory. They buy inventory and
may see reports about their store’s sales and inventory. Enterprise Mangers support
the store managers. Therefore, they can see reports of sales, see the inventory of
multiple stores, and trigger the exchange of inventory items between stores.

The excerpt shows two components: ReportingServer and StoreServer, both
subcomponents of the component Application. These two components are user
interfaces to the system and should provide their services only to authenticated
users. The component StoreServer provides the interface IStoreInventoryManager,
which should be accessible to store managers and enterprise managers. The
component ReportingServer provides the interface IReporting, which should be
accessible only to enterprise managers. For security reasons, customers are not
allowed to use any of these interfaces.

The UML diagram in Fig. 9.10 is enhanced with Secure Information Flow (SIF)
[RJ12] information. SIF annotations in UML diagrams define authorisation rules for
structural elements in an architecture, which decide about the access of a partially
ordered set of roles. In the running example, the following authorisation constraints
are defined:

1. The component StoreServer provides the interface IStoreInventoryManager,
which should be accessible to store managers and enterprise managers.

2. The component ReportingServer provides the interface IReporting, which should
be accessible only to enterprise managers.

For security reasons, customers are not allowed to use any of these interfaces.

«Component»
Applica�on

«Component»
StoreServer

«Component»
Repor�ngServer

«Interface»
IStoreInventoryManager

«Interface»
IRepor�ng

<<securityLevel>>
level = storeManager

<<securityLevel>>
level = enterpriseManager

<<DefSecurityLevels>>
poset = {

customer < storeManager,
storeManager < enterpriseManager

}

Fig. 9.10 Excerpt of the CoCoME architecture extended with SIF annotations in UML

9 Maintaining Security in Software Evolution 225

Table 9.1 Overview of the mapping between UML meta-model elements, CoCoME meta-model
elements, and program code structures

UML meta model element CoCoME meta model element Program code structures

Component with name
“Server”

“Server” component Type declaration with name
“Server”

Composite component Component with children Package declaration with
package or type declarations
as subcomponents

Operation provided role Provided interface Implemented interface

Operation required role Required interface Interface instance given to
type via constructor

In the context of the running example, Codeling is used to create a UML view
upon the CoCoME architecture. A formal mapping between interconnected UML
components and CoCoME program code already exists in Codeling. Table 9.1
gives an overview of the mapping between the CoCoME code, the corresponding
architecture implementation language, and UML meta-model elements. The table
only contains the mappings that are relevant for adding SIF information to the
running example. To integrate SIF information on UML components, interfaces,
and operations with Codeling (a), the IAL must be able to handle this information.
Also mappings must be created (b) between the IAL and the CoCoME code and (c)
between UML stereotypes for SIF and the IAL. In the following, these translations
are described.

9.3.3 Security Aspects in the Intermediate Architecture
Language

A translation model in Codeling is implemented using the IAL. Figure 9.11 shows
the core of the IAL. Within Codeling, the IAL core is used to describe architectures
with component types, which provide and require interfaces. Component instances
represent single instances of placeholders for component instances that are dynam-
ically created at run time. This core contains all relevant meta-model elements to
describe the elements shown in Table 9.1. The architecture is the root element of the
IAL. It comprises component types and interfaces. Component types provide and
require interfaces. The IAL also contains run-time elements for component types,
their provisions, and requirements.

The IAL core is extended with profiles [Lan+12] for describing SIF information.
A profile extends a meta model with new classes and stereotypes. A stereotype
application is an instance of a stereotype. When a stereotype is attached to a meta-
modelled class, a stereotype application can be attached to the instances of that
class. Such extended class instance can then use the attributes and references of the
stereotype.

226 J. Jürjens et al.

Fig. 9.11 The core of the IAL

Fig. 9.12 SIF profile for the IAL

Figure 9.12 shows the profile for SIF information. This implementation is based
on the definition of SIF from Ruhroth and Jürjens [RJ12]. The classes in the upper
row of the figure are references to classes of the core or other profiles. The SIF
profile defines three stereotypes. The stereotype DefSecurityLevels is applicable to
component types or namespaces from the namespaces profile (not shown). With
this stereotype applied, components or namespaces can declare partially ordered
sets of SecurityLevelEntities, the SecurityLevelPosets. The entities correspond to
roles in the system. The stereotype SIFProperty is also applicable to component
types and namespaces. SIF properties describe the basic security predicates (BSPs).
Each property takes two sets of names of BSPs as arguments the upper and lower
BSPs [RJ12]. The stereotype SecurityLevel is applied to interfaces of the IAL core
or operations of the profile for operation-type interfaces (not shown). With this
stereotype, the minimum role necessary to use the interface or single operations
of an interface is declared.

9 Maintaining Security in Software Evolution 227

Fig. 9.13 Excerpt of the CoCoME architecture extended with SIF annotations in the IAL

In the running example, the CoCoME architecture, including the SIF informa-
tion, is translated into an IAL model with the SIF profile applied. Bidirectional
model transformations are used to create a formal mapping between the model
types. Figure 9.13 shows an excerpt of the CoCoME architecture with the SIF
information defined in Sect. 9.3.2. The left-hand side shows an excerpt of the
CoCoME architecture expressed with the IAL. A composite component Application
contains two subcomponents: StoreServer and ReportingServer. Each provides
an interface. The right-hand side shows the SIF information attached to this
architectural core. The composite component declares three security levels: enter-
priseManager, storeManager, and customer. Their partial order is given with
enterpriseManager > storeManager and storeManager > customer . For
using the interface IReporting of the component type ReportingServer, the user has
to be an enterprise manager. For using the interface IStoreInventoryManager of the
component type StoreServer, the user has to be a store manager or an enterprise
manager. Customers are not allowed to access any of these interfaces.

9.3.4 Integrating Security-Architectures with Code Using
the Model Integration Concept

Next, a mapping between SIF profile elements in the IAL and program code
structures is necessary. These program code structures must work with the program
code structures used for the translation of CoCoME architecture elements, briefly
described in Table 9.1.

228 J. Jürjens et al.

Fig. 9.14 Mapping between the DefSecurityLevel and the SIFProperty stereotypes and program
code structures in CoCoME

The stereotypes DefSecurityLevels and SIFProperty are applicable to com-
ponents and namespaces. In the context of this example, a definition of secu-
rity levels and SIF properties should be applied to the composite component
application. In the CoCoME program code, this composite component is rep-
resented by a Java package with the name org.cocome.tradingsystem.
inventory.application. A feasible code structure for the given SIF infor-
mation is annotations on the package. Therefore, a file package-info.java
is created in the corresponding folder, applying a respective annotation to the
package declaration. The corresponding annotation declaration is part of an external,
reusable library that is generated for this purpose. Figure 9.14 shows this mapping.
The SIF property annotation owns two members of the type String: upper and
lower, corresponding to the respective stereotype attributes. In the example in
Fig. 9.14, the value “SR” for the member upper denotes Strict Removal. This
means that all confidential events are independent of events that are visible or
“neither-nor” [Man03, RJ12]. The annotation for the definition of security levels and
their partial order DefSecurityLevels is also attached to the package declara-
tion. Its reference entities takes an array of types as parameter, which extend a
specific marker interface. This marker interface denotes that the implementing type
represents a security entity. This mechanism is used to use the type-safety features
of the Java compiler to validate the member values at compile time. In addition,
typical IDEs propose known security entities via their code completion features.
The same mechanism is used for SecurityLevelPosets, where a lower and
an upper entity are given as values.

In the example, only enterprise managers are allowed to access the interface
IReporting. In the CoCoME program code, this interface is represented by a
Java interface with the same name. A feasible code structure for the security level
is an annotation on the interface declaration. Figure 9.15 shows the mapping as an

9 Maintaining Security in Software Evolution 229

Fig. 9.15 Mapping between the SecurityLevel stereotype and program code structures in CoCoME

example. The default annotation member is a reference to a type that represents a
security entity, that is it implements the corresponding marker interface.

9.3.5 Related Work

The relationship between models and code is subject to related work. The field
of model-code co-evolution describes how models and code can evolve together.
Works in this area usually focus on one specific type of model. For example,
Langhammer [Lan17] describes an approach for the co-evolution of Palladio
architecture models and Java program code. Langhammer describes rules that
preserve a consistency relationship between the architecture model and the program
code during changes in either side. Ruhroth et al. [Ruh+14b] present an approach for
managing the consistency between certain security models and code. Their approach
synchronises atomic change operations on models and corresponding operations on
code. Our approach instead explicitly integrates arbitrary model information with
program code.

Approaches for the co-evolution of models and code often do not consider the
evolution of the underlying languages. Rocco et al. [Roc+14] explicitly describe
language evolution as aspect of model-code co-evolution. When a system is
modelled using meta models and corresponding code is generated, a challenge
arises when the meta model is subject to evolution. Such changes can break the
code generators. This is a case of model-code co-evolution: the meta model can be
regarded as model, and the code generator can be regarded as code in the context
of model-code co-evolution. The authors propose a co-evolution approach where
model changes are propagated via well-defined transformations, which operate on
the code and take the model difference as input. This approach can be used to handle
architecture language evolution regarding model editors but not regarding the code
that implements a system’s architecture.

The synchronisation between models and between models and code is subject
to the area of (in)consistency management [Fel+15]. These approaches assume

230 J. Jürjens et al.

that two views upon a shared body of information overlap. When one view
is changed in the overlapping part, these changes should be propagated to the
other view. Consistency management deals with methods and tools to re-establish
synchronisation. Existing consistency management approaches focus on coarse-
grained program code structures, such as code files or classes, and relate them to
model elements. Konersmann [Kon18] argues that a more fine-grained abstraction
level is necessary and implements such consistency relationships in Codeling.
Vitruv [KBL13] is a more general approach to keep different views consistent. It
bases on coupling EMOF-specified meta models. For coupling the Palladio meta
model for architectural specification with Java, see the PhD thesis of Langhammer
[Lan17].

Already in 1995, Murphy et al. [MNS95] presented an approach for bridging
the gap between program code elements and higher-level software models. In their
approach, a mapping is created between higher-level model elements and program
code elements. The approach of Murphy et al. is limited to mappings between
model elements and program code files, neglecting the structures within the code
files. Approaches need to address structures within the code files to add decision
knowledge to specific architecture elements in the code.

9.3.6 Summary

This section presented the application of Codeling on security information. It is
used to create a formal bidirectional mapping between security model information
attached to architecture specification models and the program code that implements
the security architecture. Therefore, the presented application addresses the first
challenge of diverse non- or semi-formal sources of security knowledge. We
have shown in this section that Codeling can be used to integrate model-based
security information with program code, using a formal bidirectional mapping.
The implementation allows to specify the security annotations in a model-based
environment and in the program code. The program code takes the role of a single
underlying model.

The program code structures that are used to represent the model information
are also accessible at run time via introspection. Therefore, it is possible—and
supported by Codeling—to create or extend a run-time environment so that the
security constraints defined in the program code can automatically be verified. The
approach can therefore be used not only for documentation and for relating security
information to architecture model elements but also for monitoring the application
security. This addresses the second challenge, because with this monitoring, devel-
opers and security experts are supported to react to context evolution, which may
compromise the system’s security design or compromise the system at run time.

9 Maintaining Security in Software Evolution 231

9.4 Contextual Security Patterns

For the evolution of large and long-living software systems, it is essential to
understand not just the existing parts of the software, like requirements, design/ar-
chitecture, or code, but also how these elements could change over time and
especially how the corresponding components (inter-) act or applied in run time.
In particular, for maintaining the security of software-intensive systems, one has to
consider not only changes to requirements, which result in adaptive, corrective, or
perfective evolution steps in the system directly, but also changes to the context of
this system. This context comprises the various parts of the execution platform, but
also changes in attacker capabilities; changes to user role models, including defined
use and misuse cases; new access policies; protocols; or run-time configurations.

An important factor for a successful architectural approach is the understanding
that even with well-defined interfaces between components and subsystems, their
inner behaviour (i.e. implementations) or usage profiles can change. This does not
necessarily mean that the interfaces are accordingly modified, which can result in
security problems, where especially the black-box-modelling is favoured. These
factors need to be handled thoroughly and explicitly in design time, so the architects
can foresee the possible outcomes of evolutionary changes and run-time differences
before it is too late or any eventual costly and complex interferences are necessary.
To address this issue, we provide a lightweight architectural documentation and
analysis approach using security patterns enriched with explicit decision assump-
tions and prerequisites. In this section we introduce our approach.

9.4.1 Security Challenges in Software Evolution

Software security is a cross-cutting consideration with respect to various software
life cycles (from requirements elicitation to maintenance) and with respect to
other quality attributes (e.g. performance, reliability, etc.). Regarding the evolution
software systems based on their security properties, there are several identified key
challenges [Sei+16]. For our approach, the following issues are of great importance,
which we categorise into two groups. System evolution is still an important factor as
it is permanent and phase spanning. Changes within the known system boundaries
can still be fuzzy, which need to be monitored thoroughly. However, context
evolution results in more challenging issues, as the effects are not explicitly known
or cannot be identified without further data in design time. We, again, list three main
issues within the evolution of context of software-intensive systems as follows:

Threat Evolution Attackers’ capabilities evolve very fast, and they are unpre-
dictable. Therefore, continuous execution of security analysis are needed at run
time to identify new vulnerabilities, which becomes a very costly process.

Deployment and Infrastructure There are a lot of factors regarding the resource
environment and the allocation of the components that affect the correct appli-

232 J. Jürjens et al.

cation of security solutions and patterns. Furthermore, fuzzy system boundaries
worsen the situation due to uncertainty during design phase about the deployment
and application of the system.

Application and Run-Time Configurations Configurations of a software system at
run time and for its possible applications have strong influence on the sys-
tem security. Early extraction is especially difficult, and there are no general
approaches for multiple configurations with respect to security.

Hence, the effects of evolution can have severe results on the security as well,
making irrelevant attacks relevant or making security decisions invalid. Preserving
security during software evolution can be promoted by understanding and reasoning
the architecture and made design decisions of the software system. However, secu-
rity vulnerabilities are most often code related; still architectural misconceptions
will create security vulnerabilities. Hence, an architectural security analysis can
yield such risks and vulnerabilities in prior phases of a project and support its
evolution. However, it is not comprehensive as code-related vulnerabilities need
additional analyses. But architectural design decisions, such as using specific
security design patterns, suit very well, and as the software architectures are a
specific abstraction of the whole system, security needs to be addressed on the same
abstraction level. Well-structured security patterns, to be decided and modelled at
design time, suit very well to address and mitigate such vulnerabilities and risks.
On the other hand, abstracting security properties often result in loss of rational
knowledge and makes it complex to validate design decisions regarding security,
as changes to software or its environment happen. Security, as well as other non-
functional requirements such as performance, must therefore be addressed explicitly
by the architects because these properties are determined not just by individual
architecture components but also by their interaction, coordination, and usage at
run time. We call these factors, on which the correct functioning of security patterns
rely, the context of the software system. If decision-making process does not involve
this explicit context information, security is doomed to degrade. In this section,
we describe our approach addressing this problem by handling context information
regarding the security properties explicitly on software architectures.

9.4.2 Contextual Security

Software security is a quality attribute that depends on many factors based on the
contextual nature of the software. Most of these factors are usually unknown to
software architects at design time, like the attacker behaviour or run-time configu-
ration. Architects need to assume such aspects, if they ever do it in the first place,
regarding their security decisions. Furthermore, like in any software architecture,
where an abstraction is necessary to focus on only relevant aspects of the system,
a lot of information becomes implicit, including assumptions about the possible
security threats and applied patterns. This type of unpersisted information gets

9 Maintaining Security in Software Evolution 233

usually neglected, especially as the software evolves and existing design decisions
change, which would result in unnoticed security issues. Furthermore, due to the
missing security-related information at design time, architects cannot foresee the
probable security vulnerabilities that may arise first at run time, even if any related
decision was made at design time. Hence, solutions addressing such security issues
on architectural level need to consider the corresponding abstraction and has to be
handled with limited amount of information, which still describes the context of the
system in order to provide proper security for the data and function. Furthermore,
in case the problems are repetitive, that is they happen to be recurring from time to
time, even with contextual and application-specific differences, design patterns can
be helpful in providing a generic solution, which needs to be made concrete later
for the specific situation. One way to systematically deal with contextual security
is the documented use of security patterns. Therefore, we extend descriptions of
security patterns in their pattern catalogue with information on contextual security.
This means we document which security-related assumptions a pattern needs to
make on the context. This information is then used as structural logical constraints
between the security patterns and threats, for whose mitigation they are designed to.

9.4.3 From Design Patterns to Security Patterns

Design patterns have their roots in civil engineering, where it is about the archi-
tecture of buildings and structures and not the software. According to Alexander
[Ale77], “each pattern describes a problem which occurs over and over again in [...]
environment, and then describes the core of the solution to that problem, in such a
way that [. . .] can use this solution a million times over, without ever doing it the
same way twice”. Although this stands for a very different domain, the definition
fits for software design patterns as well. In any case, patterns describe “a solution
to a problem in a context” [Gam+95]. Furthermore, according to Schumacher
et al. [Sch+05], a security pattern “[. . .] describes a particular recurring security
problem that arises in specific contexts, and presents a well-proven generic solution
to it. The solution consists of a set of interacting roles that can be arranged into
multiple concrete design structures, as well as a process to create one particular
such structure.” This definition again underlines the importance of the context in
which the problem and its solution resides, meaning the software and its context,
including the run-time environment, user behaviour, etc.

It is important to mention, by analogy with design patterns of Gang of Four
[Gam+95], that they are not invented on behalf but rather discovered/identified as
a possible reusable security solution. Security patterns are specified using specific
templates, like the design patterns. There is no standardised template, but in general
they consist of at least a name, context, a problem statement, a solution, known

234 J. Jürjens et al.

uses, and consequences. A few simple examples for security patterns in real-
life applications would be the role-based access control or application firewall
[Fer13].

9.4.4 Security Patterns as a Means for Contextual Software
Security

By using security patterns and patterns in general, no reinvention of the wheel
is necessary, which grants time and resources, and also a concise unambiguous
documentation is established. This documentation based on security concerns (incl.
threats and security patterns), structurally applied on the architectural level, can
encompass the necessary contextual information crucial to the validity of the
security solutions chosen by the software architects. By using security patterns as a
means of mitigation against the modelled attacks or for resolving security issues in
software architectures, architects also support different aspects of design decision-
making process. It plays a crucial role at the design time, which reduces the further
complexity and unnecessary complexity at run time. Furthermore, integrating such
solutions into software architectures as rational knowledge base allows them to
use this structured documentation as first-class software entity if they are working
with model-driven software engineering methods [Völ+13]. Hence, the security
patterns can be treated equally to the code within the entire life cycle of the
system, become a primary element in implementation, and support architects or
developers with automatic code generation, maintaining the system as it evolves
or analysing/monitoring the run-time security state of the system. However, within
our approach, as described in previous sections, security patterns are extended by
explicitly using formally structured context prerequisites. It allows us to exploit this
architectural documentation to check the correct application of security patterns
in case of evolutionary changes and trace the impact on concrete architectural
components responsible for the security solutions.

These ideas led to an architecture-based approach [TH16a] as an extension to
architectural description languages (ADL) with security patterns, context prereq-
uisites, as well as other security artefacts (e.g. modelled threats). Within this, the
necessary profiles and stereotypes are provided for the integration of the models
and catalogues into a specific ADL, the Palladio Component Model [Reu+16]. An
overview of this approach can be seen in Fig. 9.16.

The abstract workflow of using security patterns enriched with contextual
information can be summarised in a few points:

• The security expert creates the initial reusable, model-based security catalogue
and documents the security patterns in combination with the possible threat
mitigations. In it, the main security elements, that is attacks and security
patterns, are logically combined via prerequisites, as can be seen in Fig. 9.17.
No direct relation otherwise exists between them. Prerequisites, the architectural

9 Maintaining Security in Software Evolution 235

Context

System

Architect

designs

uses

Runtime

e
miT

ngise
D

attacks

configures

Attacker

User

Security
Concerns

Administrator

Fig. 9.16 Overview of the security pattern approach exploiting the contextual and run-time
information on software architectures [TH16a]

PatternCatalog

SecurityPattern

PrerequisiteCatalog

Prerequisite

status : Status = VALID

ThreatCatalog

Attack

[0..*] securityPatterns[0..*] prerequisites[0..*] attackTypes

[0..*] securityPatterns

[0..*] prerequisites

[0..*] prerequisites

[0..*] attacks

Fig. 9.17 Overview of catalogues containing the main security elements

representations of contextual assumptions, serve as success parameter for secu-
rity patterns and are necessary for the correct and continuous application of the
patterns.

• The software architect designs the software system and describes it using
any architecture description language (ADL). The necessary knowledge of the
systems context (spanning from usage profiles to possible configurations by
the administrators or from deployment environment to even attacker behaviour)

236 J. Jürjens et al.

can then be derived from the security catalogue. The integration of the security
catalogue with the corresponding architecture description language happens with
the well-known profiling and stereotyping. For this, the structural roles of the
security patterns are mapped by the architect to the software components, which
are again extended by the relevant prerequisites from the same catalogue based
on the made security decisions.

• As the system evolves or any changes are necessary to make security design
decisions, the architect can check the state of the explicit prerequisites to analyse
whether a security pattern is still functional and efficient against any threat or
whether an attacker is again capable of exploiting a vulnerability despite the
existence of a mitigation security pattern.

The described roles and the relation between the elements of our approach are
depicted in Fig. 9.18. An initial application of our approach is already conducted
within the CoCoME case study, and its more detailed description can be found in
Sect. 12.1.3.

As for validating the systems’ security in case of any changes that reflect
themselves in the made prerequisites about the security decisions, an analysis
method, which is based on the propositional logic, is introduced [TH16a]. Further
improvements have been made since then, and the method is consisted of two parts:
(1) security pattern analysis and (2) trace impact analysis.

Fig. 9.18 Depiction of the roles and architecture elements for our approach

9 Maintaining Security in Software Evolution 237

1. Security Pattern Analysis first checks whether all the necessary structural roles
of security patterns are correctly applied on the architectural level. If a necessary
role is missing in the first place, a security pattern cannot generally function
correctly, and the vulnerabilities it should cover will be present. If all the
necessary roles of a security pattern are present in the system’s architecture,
then contextual analysis is conducted. For this, it is checked whether any of the
prerequisites of any possible attack on the system is covered by the security
pattern. An attack can be successful and issue a risk if and only if all of its
prerequisites are valid. Logic of the analysis anticipates to at least cover one of
the required prerequisites for a possible mitigation of the corresponding attack.
So if a security pattern is able to cover a required contextual prerequisite for an
attack, it can be deemed to function correctly.

2. Trace Impact Analysis is conducted in case of any evolutionary changes, which
result in changes to the secure state of the system. If an attack happens to
be issuing a risk after the change happens and it is shown in security pattern
analysis, the architect follows the roles of the security pattern in question over it
stereotypes and changed prerequisites to trace to the architectural elements.

This analysis allows architects to react on possible evolutionary changes and
different run-time scenarios with respect to security in early design phases, which
becomes a complementary security measure to methods like code-based security
analysis or penetration testing, where the code and concrete run-time environment
have to be present.

9.4.5 Related Work

General-purpose (e.g. UML) or more specific (e.g. PCM) ADLs have often no
direct support for security modelling. Nevertheless, there are several approaches
and extensions addressing this gap, some of which also provide further support like
analysis or simulations. Schneier [Sch11] introduced attack trees based on feature
modelling to model threats, which are described based on the attackers capabilities.
A tree-based structure is used to represent all possible attacks, with the main goal
of an attacker placed in the root element and the different ways to achieve that goal
exploited in the child nodes, which can be semantically enriched with values like
probabilities or costs for validation purposes. However, this approach focuses only
on the threat side and not on the architecture itself, including security patterns, or
on its context, and due to neglected security patterns, it is not possible to easily
handle security-related software evolution or any analysis thereof. An industrial
approach to security modelling is “Security Development Lifecyle” (SDL) [Sho14],
a practical process that is developed to accompany security-related decision-making.
It is consisted of two catalogues: (1) STRIDE to model threats based on fix
categories (e.g. tampering, denial of service, etc.) and (2) DREAD to evaluate
the modelled threats based on possible impacts and a numeric scale. However,

238 J. Jürjens et al.

considering only the attack side of the security leads eventually to inconsistencies
between threat possibilities and applied security solutions.

An extension to UML is SecureUML [LBD02], which focuses solely on
the system access. It specifies constraints for authorisation to define role-based
access control and analyse discrepancies. Another extension is UMLSec [Jür05],
[Ahm+17]. It introduces predefined profiles containing security-related stereotypes
to cover security properties on architectural level, which are used to represent the
component roles and the threat abilities that can exploit these roles. SecVolution
[J B+15], on the other hand, builds upon it to support evolution. It provides a process
model (consisted of a system and maintenance model) for security requirement
elicitation, which combines the experiences gathered during development and
possible evolution scenarios, which can support co-evolution. These extensions
therefore focus on single principles of security (access control and information flow
respectively) in an information system, and the analysis and evolution supports are
either non-existent or can be limited in representing generic security information.
This is why we see the need for a more expressive and adaptable model based solely
on using security patterns and their analysis.

9.4.6 Summary

Software security is a very fragile quality attribute that is dependent on a lot of
factors existing from run time, which are mainly unknown, to software architects
during design time. So architects can only assume and document these assumptions
if at all. After a brief introduction regarding the security patterns is given, this
section presents in this matter the contextual security patterns approach, which
mainly incorporates two sides of security (threats/attacks and solutions/mitigations)
into an extension for ADLs and combine them via explicitly documented and
accordingly formalised context assumptions called prerequisites. This extension
handles security concerns on architectural level, in which the context-related
information of security patterns and attacks are explicitly gathered and structurally
documented. These prerequisites are used as a metric for model-based security
analysis, which checks the validity of applied security patterns based on the software
system state or run-time information. That way, software architects can further use
analysis results to foresee the impact of evolutionary changes and trace them on
system models and accordingly during software evolution, which could ease the
process of maintaining the secure state of the underlying system.

9 Maintaining Security in Software Evolution 239

9.5 Self-adaptive Security Maintenance at Run Time
by Identifying Suspicious Behaviour

An observation made is that evolution in the system environment may lead to
vulnerabilities or ineffective security mechanisms at run time. For example, a new
attack pattern may be invented or a regulation might call for a more rigid privacy
policy. The information system remains insecure or must be shut down until the
security violation has been fixed. Finding and implementing a solution takes time.
In cases where the system needs to be shut down, this is costly or may even
be impossible for large and long-living systems. To get a security fix right, by
considering all involved artefacts such as requirements, UML models, or code units,
and respecting the system design to avoid architecture decay, this even more calls
for careful acting. The design-time approaches, as discussed so far, focus on design-
time artefacts and thus fall short on analysing vulnerabilities coming from the source
code or the execution context. Moreover, there are security requirements that are
hard to check statically, for instance when mechanisms like Java reflection are
used [EL02, Mur+98, CM04]. Apart from that, systems that are requested to be
available via the Internet and without downtime are more likely to be affected by
an attack previously undocumented. In this cases, to avoid downtime or to narrow
the attack surface, it is desirable to also detect new attacks, for example based on
suspicious behaviour. This section presents work towards monitoring and adapting
a long-living system at run time.

9.5.1 Overview

Maintaining a critical system needs expertise in the field of security. Although
more and more violations can be prevented by technical means, the experience and
expertise of security experts to deal with new attacks remain irreplaceable because
many processes and approaches cannot be fully automated.

According to the 2017 Global Information Security Workforce Study,
commissioned by the Information System Security Certification Consortium
(ISC)2, Europe will face a gap of 350,000 cyber-security professionals by
the year 2022 [Int17]. For example, even organisations like the European
Telecommunications Standards Institute (ETSI) only employ external security
experts for a limited time [Hou+10]. Thus, security experts are few in number,
and it is reasonable to support them to become as efficient as possible. Technical
mechanisms for preserving security must be complemented by procedures and
cognitive support for human experts who are willing to share their knowledge; they
must be empowered to do so at the least effort possible.

Challenges include eliciting and modelling adaption requirements. A static view
on the system’s security is not sufficient. Therefore, multifaceted run-time infor-
mation of the software system needs to be continuously monitored and analysed

240 J. Jürjens et al.

Design-Time Adaptation
Run-Time

Adaptation

Operation
&

Monitoring
Analysis

Secure
Information

System
Model

Run-Time
Info

RSMM

Developer

Stakeholder

Code

Environmental Security Knowledge

Monitors

Operator

New type of input for design-time adaptation informed by run-time observation

Requirements for Adapting
Security Mechanisms to Context

Deriving
Context-

Dep. Reqs

Design-time Run-time

Heuristic
Indicators

Security
Incidents

User

Attacker

Developer
Implemen-

tation
& Test

Fig. 9.19 Overview of the SecVolution run-time approach using the information flow syntax
described in Fig. 9.2

with respect to given security requirements. Current infrastructure, configurations,
and deployment information must be monitored, as well as relevant aspects of
user behaviour. When an incident or a suspicious behaviour occurs, the adaption
mechanism must make a decision as quickly as possible. After a system has been
designed, it is implemented and gets deployed. To react to security breaches during
run time, a specific security mechanism must be selected and put into operation and
may be adapted to a certain extent.

Figure 9.19 presents the overview on the run-time security adaption approach.
The rectangle captioned Design-Time Adaption captures the design-time process, as
presented in Fig. 9.3. The outcome of this process is a model of the secure infor-
mation system model. After the implementation and testing phase, executable code
exists that is run and operated by the user. In contrast to the system design phase, an
additional attack vector occurs from attackers challenging the system at run time.
To bridge the gap between design time and run time, an extension of the security
maintenance model, called Run-Time Security Maintenance Model (RSMM), is
proposed. During the operation phase, the system is monitored. Monitoring data are
continuously recorded and analysed. Supported by heuristic indicators, incoming
monitor findings are assessed, with the assistance of the developer and operator.
When a security incident is ascertained, it is decided if there needs to be a run-
time or design-time adaption. Run-time adaptions are accomplished by adapting the
running system. Moreover, security incidents discovered during run time can also
trigger design-time changes.

In Sect. 5.4, an approach is presented to externalise tacit knowledge during run
time. The focus is to gain insight of how users interact with the system to learn
about which system requirements should be adapted, removed, or added. The focus
of the run-time approach presented in this section is to assume a mostly static set
of security requirements and check the system’s compliance to this requirements, in
conjunction with evolving security knowledge. While tacit knowledge in Sect. 5.4 is

9 Maintaining Security in Software Evolution 241

used for the way a user interacts with a system and which features he uses in which
way, in this section it can be seen as attack sequences an attacker can carry out.

Application: Running Example

As this motivating example, we consider an extension of CoCoME as introduced
in Sect. 4.2. For our motivating example, we consider an extension of CoCoME
with mobile shopping applications for a CoCoME online store. Mobile shopping
applications for a CoCoME online store need to prevent attackers from exploiting
entry points like personal data of the other customers, as well as internal business
data. Thus, various security mechanisms are used, like cryptographic hashes, to
secure authentication procedures (login).

Assume a mobile application (App) for the CoCoME online store that uses the
SHA-1 hash-algorithm for the login protocol. This algorithm was considered secure
until the year 2005, when a method was published to break the security mechanism
[WYY05]. Since the security of the authentication depends directly on the security
of the hash algorithm, the developers of the application can react to this change
in the security knowledge by replacing the algorithm with another from the SHA-
2 family (design-time mitigation). The SHA-2 family consists of six similar hash
algorithms, each providing a different security level. After the replacement, the
application can now choose an appropriate algorithm for a requested connection.
More secure algorithms need more computation power and reduce the speed of
feedback to the user. Thus, usability and acceptance of the mobile application are at
stake, and the client will have to make a compromise between security and usability.

When it was decided to replace the hash function by SHA-2, the developers
realised that this would take some time. Since the mobile application generates sig-
nificant revenues for the company, the mobile application should not be deactivated
while performing this update. Therefore, it was decided to take a calculated risk: The
company did not want to lose too much business and was willing to accept a certain,
limited risk of loss. Since regular user monitoring showed that most customers buy
for less than 100 e per month, this limit seemed to be a reasonable compromise:
The application was quickly modified to limit the maximal monthly turnover to
100 e per customer. As a result, a few customers might be prevented from spending
more money. Most customers, however, would not notice the limit since they spend
less money anyway. The company’s business is not obstructed, and the turnover is
only endangered to a small extent during the time of patching the authentication
algorithm. When the new algorithm was in place, the limit could be removed. This
strategy ensured that a sufficient degree of security was preserved at all times and
with an optimal trade-off to limit negative impact on business.

As computing devices get more powerful, breaking hashes comes within the
reach of attackers. Therefore, the weaker variants of the SHA-2 family will also
be considered breakable at some future point in time. The system stays the same,
but the increasing ability and knowledge of attackers compromise security. Given
that the whole family of algorithms is available for implementation now, the system

242 J. Jürjens et al.

can easily be adapted to prohibit the use of the insecure variants by an automated
run-time adaption of the application.

9.5.2 Capturing Context for Security Adaption

As we briefly introduced in Sect. 9.5.1, a detailed view on the system’s context
is inevitable. Not only the code itself but also the execution context and informa-
tion that can be gathered during run time, for example using monitoring, needs
to be considered. They all belong to environmental aspects that can cause an
adaption. Regarding the running example, if an access routine is executed, the
corresponding assets may be at risk. Run-time monitoring can issue a warning
at the conceptual level, and it can trigger heuristic reasoning. The new run-time
extension of the security maintenance model, called run-time Security Maintenance
Model (RSMM), constitutes as a formalisation of security-related knowledge at
run time. When a concept is implemented, several components may be affected.
For example, the asset of a password list can be stored in a database. It uses a
granularity appropriate for design-time concepts (e.g. threats or assets). However, it
is not sufficient to protect the database; instead, related access mechanisms, user
interfaces, and supporting components need to be considered as potential entry
points, too. Run-time monitoring [AJY11] and process mining [Aal11] can help
spot executed parts of the implementation.

9.5.3 Leveraging Run-Time Information to Support
Design-Time Security Adaption

A system during run time produces various kinds of data that may be relevant
for assessing the system’s security. Regarding the running example, monitoring
CoCoME system generates various monitoring data: Not only internal server
operations may be relevant for the system’s security, but also the interaction that
every customer with the system has is recorded. Not only call traces but also
database transactions and application server messages can be put into an anomaly
analysis.

Natural language analysis can play a role here. A family of heuristics can treat
identifiers in source code as “expressions in natural language” (making use of
results from work such as [DMJ08]). Through this assumption, certain identifiers
are treated like words and can be mapped to security concepts such as entry point
or asset. In an isolated environment, normal behaviour can be recorded. During run
time, the monitored behaviour can be compared with the recorded one, also taking
heuristic indicators into account to distinguish compliant behaviour from an ongoing
security requirement violation. A procedure of selecting appropriate mechanisms to

9 Maintaining Security in Software Evolution 243

monitor the desired security requirements is annotated in the model. For example,
systems can be proactively monitored to predict potential violations [Zha+11]. The
source code corresponding to the model is then instrumented accordingly.

9.5.4 Heuristics-Based Run-Time Assessment to Detect
Security Requirement Violations

Run-time information consists of fine-grained representations of what happened
during the execution of code and models. For example, log files or code can be
monitored to trace the execution of software. A large amount of monitoring data
must be managed for complex information systems.

A heuristic indicator associates a defined input (e.g. sequence of monitored data)
with a conclusion. For example, a heuristic indicator may conclude from a sequence
of repeated online orders that there is a case of misuse underway, trying to bypass
the 100 e limit regarding the running example. This could be a violation of a
corresponding requirement. Heuristics use shortcuts and unproven conclusions, but
they are fast and can be used earlier than an algorithm with a supposedly higher
recall and precision [TF97].

9.5.5 Adaption During Run Time

As we argued in Sect. 9.5.1 and illustrated as part of the running example, adaption
during run time is a necessary kind of reaction when a security issue is detected that
can be reacted upon with a restricted risk. The system model can additionally be
annotated to support run-time adaptions in order to reflect implementation details
into the model level. This information is used to decide which of the security
requirements can be mitigated at design time and which one can only be treated
at run time. Furthermore, this can be used to cope with code that is initially
generated but then manually altered. The challenge here is to have tracing of
security requirements beyond the design time, for which preliminary work exists
[L M+10, AJY11].

If a violation of security requirements is detected, appropriate mitigation actions
must be taken. Violations such as loss of privacy, information leaks, or attacks on
specific assets may be mitigated through different actions. For example, the system
can be reconfigured, for example to use alternative encryption mechanisms, or an
adaption can limit the access for certain roles. For example, roles that have access
over the Internet can only access the system via a virtual private network if data are
at risk and transmission over insecure connections should be reduced. Mitigation
actions may be inferred from measured behaviour and additional information
[EAS14]. The definition of fail-safe components can support an immediate reaction
with minimal reduction of features. Detected security violations are reported to

244 J. Jürjens et al.

an expert system that retrieves priority and reaction knowledge from the modelled
security knowledge. This escalation will use techniques for design-time mitigation.

9.5.6 Related Work

Regarding the question of when a system should be adapted to preserve security,
[SDB14] presents how attacks on cyber-physical systems can be observed during
run-time.

[ES10] introduces an approach to realise security adaptation at run-time using an
ontology that takes context into account. This approach falls short of handling the
automatic monitoring of the running system. Our results show that it is feasible to
combine monitoring techniques with security adaptation techniques.

[Sal+12] gives an approach for modelling assets that can be used to model the
requirements and (security) goals of a system. However, there is currently no secu-
rity knowledge support. Our approach provides a seamless way of accompanying
the development and maintenance process with context knowledge.

[Nhl+15] supports monitoring assumptions about security requirements at run
time. However, this approach focuses on security of entities and does not address
software development.

[Omo+12, Omo+13] focuses on privacy and the requirements-level within
greenfield development of systems, while our goal is to cover security properties,
to support also long-living systems (including legacy systems), to cover knowledge
evolution, and to also cover system execution.

9.5.7 Summary

The SecVolution run-time approach has identified the following challenges:

• An evolution of the system environment may affect the system’s security at run
time.

• There are security properties that cannot be checked solely by regarding the
system design. Security properties can depend on data that are stored in databases
or can generally vary during run time, like access control configurations.

• Mitigating security incidents that arise during run time need to be acted upon
also during run time. Investigating and adapting the system design to recover its
security is not timely enough if the system needs to stay in service meanwhile.

The SecVolution run-time approach tackles these challenges. The run-time
Security Maintenance Model (RSMM) bridges the gap between the design time
and run-time development phases of a system. It connects artefacts like code that is
based on the system design, as well as run-time relevant data like application server
configuration. Run-time monitors are proposed depending on the security properties

9 Maintaining Security in Software Evolution 245

required by the system design. Using techniques like process mining and heuristic
indicators, raw monitoring data can be used to map running code to parts of the
system design. By comparing anticipated and actual system behaviour, supported
by heuristics, suspicious behaviour can be detected. By making a system run-time
adaptable, ad hoc reactions to security incidents can be realised. By providing
alternative components or fail-safe states, for example, controlled precautions can
be already part of the system design to deactivate critical system parts or minimise
the risk when a security incident occurs during run time.

9.6 Anomaly Detection for Evolving Software Controlled
Production Systems at Run Time

9.6.1 Overview

Another area for maintaining security during software evolution is Cyber-Physical
Systems. Cyber-Physical Systems are software systems that interact with their
physical environment (e.g. embedded systems, automated production systems) and
are connected to the Internet. This section focuses on Cyber-Physical Systems in
the area of production systems that consist of physical and cyber components that
are getting into connection with each other in situation-dependent ways [Mon14].
At the same time, production systems collect information of the state of the
production process, and based on these information their process is controlled
and analysed. These functionalities are business and safety critical and should be
designed, developed, and certified with care [IEC05]. Because various components
of the system depend on each other, a secure design implies that every part of
the process automation equipment is required to operate within the boundaries of
its specifications [ÅAGB11]. Therefore, production system operated in a cyber-
physical environment must carefully detect violations of their specification during
the whole evolution process, which includes, as Monostri et al. stated, a “special
emphasis on security aspects” as a major challenge. One of the most relevant
behaviour of production systems is the interdisciplinary behaviour resulting from
the interaction of the software with its environment [Vog+15c, Lad+13a]. Therefore,
unknown, unwanted, and undocumented changes in the interdisciplinary behaviour
have to be detected in the system in order to continuously operate under the
specification and to ensure a secured system.

The here presented anomaly detection approach of the FYPA2C project within
the priority program tries to find behaviour changes as potential indicators for
newly arising risks to the security during run time. In this way, the interdisciplinary
behaviour is directly considered as an information source for knowledge that can
affect security. The behaviour is expressed in models of the machine state of every
subcomponent of a production system. These models are learned during a phase
in which the system is assumed to show a well-specified and secured behaviour.
To identify anomalies, actual behaviour observed in control signals of the current

246 J. Jürjens et al.

system operation is compared to previously learned behaviour specifications. These
anomalies may increase the vulnerability of a system because they express unknown
and undocumented behaviour changes that should be checked regarding the current
security requirements. The anomalies can be intended or not intended during the
evolution, which means that the change resulting in the anomaly might be reverted
when it is not intended or transferred to the operator for adaptation. The adaptation
is left in the hand of an experienced operator, but the operator is supported by given
reasonable information about anomalies.

9.6.2 Detection Model: Machine State Petri Net

The model for anomaly detection used here describes the behaviour of a machine in
terms of its state changes. The state of a discrete production system is described
by a set of binary sensor and actor signals. Therefore, the behaviour of the
system is described by the sequence of states that are observed in the production
system. One state is characterised by a set of attribute-value pairs. One attribute
describes one specific signal of the state, and the value of the signal is its elemental
state. Consequently, the global state of a production system is expressed by the
complete set of all elemental states. These set is, in case of the targeted discrete
manufacturing systems like the Pick-and-Place Unit, deterministic and locally
iteratively observable. The change between one elemental state to another is defined
by an event. Therefore, the production system acts like an event-based system,
whose events can be observed during the operation by monitoring its event bus,
that is the digital sensor and actor signals.

The analysis of production processes is generally based on an analysis of models
that reflect the behaviour of the production system [LFL16]. These models are
systematically used as primary development artefacts, which are often iteratively
developed and evolve during the production system’s life cycle [Vog+15a]. The
models serve as a formal specification of the dynamic interaction within the
production system, for example to describe the signal behaviour. They can be
learned by using learning techniques based on the observation of states (see Chap. 6
for details about learning methods). Different model types exist to express the
behaviour of a production system. One of them is Petri Nets, which are a bipartite
graph. This graph expresses the system states as places and the state changes as
transitions. Places and transitions form the graph’s nodes, which are linked with the
arcs (edges).

Since the detection models used for detecting anomalies are based on the state
changes, they are henceforth called Machine State Petri Net (MSPN). A MSPN is a
Petri Net 〈P, T , F,M〉, where P is the set of places, T is the set of transitions, and
F ⊆ (P × T) ∪ (T × P) is the set of directed arcs between places and transitions.
Furthermore, M is the set of tokens allocated to the places and describing the state
of the MSPN. Each transition t ∈ T is annotated with one or several events ei (t).
Every event describes a specific binary signal change and can be observed at the

9 Maintaining Security in Software Evolution 247

system bus. All events annotated on a single transition occur nearly at the same time.
The maximum time difference between these events is described by a threshold
time Tthresh. The set of all events annotated on transition t is referred to as ẽ(t).
Each transition has exactly one preplace and one postplace. Accordingly, an MSPN
has the same properties as that of a state graph Petri Net (see, e.g., [DA10]). One
property is that the number of tokens in the Petri Net remains constant. To describe
the timing of an MSPN, each transition in T is annotated with a double 〈dmin, dmax〉.
The included elements are:

• dmin: Minimum activation duration
• dmax : Maximum activation duration

A transition is called activated if and only if its preplaces are marked with a token.
Furthermore, a transition t can fire if and only if:

1. It is activated.
2. The activation duration of t is between its annotated dmin and dmax .
3. All annotated events ẽ (t) occurred within a timing threshold Tthresh.

Such signal-based models can be, for example, learned during a phase in which
the system is well specified and secured (cf. learning algorithms of Chap. 6).

9.6.3 Anomaly Detection Mechanism

For anomaly detection, the behaviour of the system is compared with the behaviour
of its previously modelled MSPN. To do so, each event occurring in the real system
is passed to the MSPN. The occurrence time tocc of the kth event is henceforth
referred to as tocc (ek). If the events contradict a valid behaviour of the MSPN, an
anomaly is detected. If not, the marking of the MSPN is updated according to the
incoming events. The following events are defined for MSPN:

1. There is no activated transition that has the occurred ek event annotated:

�t : t activated ∧ ek ⊆ ẽ (t) (9.1)

This anomaly detects changes in terms of new introduced signals, that is when
a new sensor is implemented in the system.

2. There is an activated transition t , and the occurring event is annotated on it. But
the time difference between the current event and the last occurred event that
is not part of ẽ (t) (i.e. the last event that triggered a firing) is smaller than the
annotated minimum activation duration dmin (t):

∃ek−n /∈ ẽ (t) , ek ∈ ẽ (t) : (tocc (ek) − tocc (ek−n)) > dmin (t) (9.2)

If this anomaly occurs, it gives a hint that some behaviour of the observed
system is carried out faster as given by the model.

248 J. Jürjens et al.

3. The time difference between the actual time tnow and the last occurred event ek

is bigger than the annotated dmax of all activated transitions:

tnow − tocc (ek) > dmax (t) ,∀t : activated (9.3)

In contrast to the previous one, this anomaly indicates that some behaviour is
slowed down.

4. An event occurred that is part of ẽ (t) of an activated transition t , but not all other
events of ẽ (t) occurred within the given time threshold:

∃ek ∈ ẽ (t) : (tnow − tocc (ek)) > Tthresh (9.4)

If this anomaly occurs, events that should occur (nearly) at the same time do
not show this behaviour any more.

9.6.4 Example: Using the PPU Case Study

The presented anomaly detection method has been applied on the PPU case study
plant and tested on the PPU during various runs. To apply the approach, I/O events
of the PLC controlling the PPU have been observed. All sensor events (PLC inputs,
e.g. triggers of light barriers detecting a workpiece), as well as all actuator setpoint
events (PLC outputs, e.g. command motor on or off), have been passed to the
corresponding MSPN. Technically, the events have been compared with a state
automata transformed from the MSPN. Figure 9.20 shows an example of an MSPN

0 Actuator orterConveyorTowardsStacker
1 Sensor orterLightbarrierCranInterface
0 Actuator usherY1
0 Sensor_S

S
S

orterPusher1MovedIn
1 Sensor_SorterPusher1MovedOut
0 Actuator_PusherY2
0 Sensor_SorterPusher2MovedIn
0 Sensor_SorterPusher2MovedOut

Conveyor state (bit ordering of signals)

P1

T1
Actuator_SorterConveyorTowardsStacker ↑

Sensor_SorterLightbarrierCranInterface ↑

P2

T2Sensor_SorterLightbarrierCranInterface ↓

P3
T3

Actuator_PusherY1 ↑
Sensor_SorterPusher1MovedIn ↓

Sensor_SorterPusher1MovedOut ↑

P4

T4
Actuator_PusherY1 ↓

Sensor_SorterPusher1MovedIn ↑
Sensor_SorterPusher1MovedOut ↑

T5
Actuator_PusherY2 ↑
Sensor_SorterPusher2MovedIn ↓
Sensor_SorterPusher2MovedOut ↑

P5

T6
Actuator_PusherY2 ↑
Sensor_SorterPusher2MovedIn ↓
Sensor_SorterPusher2MovedOut ↑

T7 Actuator_SorterConveyorTowardsStacker ↓

T1

00010010

11010010

10010010

10101010 10010101

T2

T3 T4 T5T6

T7

P

Fig. 9.20 MSPN of the PPU conveyor in Sc10 and corresponding state graph

9 Maintaining Security in Software Evolution 249

describing the behaviour of the conveyor of the PPU in Scenario Sc10 (for scenario
description, see [Vog+14b]). On the right side of Fig. 9.20, the constructed state
graph is shown. For simplicity, the annotated timings are not shown here.

The evolution scenarios of the PPU have been executed consecutively from Sc1
to Sc12. MSPNs describing a specific scenario have been used for anomaly detection
of the corresponding following scenario. For example, the shown MSPN from Sc10
has been used for anomaly detection in Sc11. Each evolution scenario could be
detected with the anomalies defined above, as long as the evolution scenario resulted
in a change of behaviour observable on the PLC I/Os. The change from Sc1 to
Sc2, for example, could not be detected because it only includes an increase in
the capacity of the output ramp. There is no change in the timing or order of any
sensor or actuator events. Therefore, this change could not be detected. Most of the
evolution scenarios of the PPU include the introduction of new sensors or actuators
and could accordingly be detected by anomaly detection. In addition, further
abnormal behaviour has been generated to test the anomaly detection mechanism.
This includes arbitrary sensor triggering (e.g. manually triggering a light barrier), as
well as stopping or slowing down workpiece transportation by removing or holding
a workpiece. The anomaly detection mechanism was able to detect these anomalies
during run time.

For further information regarding the application of the anomaly detection
method for supporting evolution, see [LFL16, Lad+14b, Lad+15b].

9.6.5 Related Work: Finding Behaviour Anomalies

Methods for recognising behaviour changes are needed to support the evolution of
systems that may change unintentionally or without model adaptation and analysis.
One method includes observing the system behaviour on the software interface
and comparing it with a model representing the last known behaviour. Such a
method is called anomaly detection. The anomaly detection method described in
this section is mainly oriented on fault detection known from fault diagnosis, for
example [Ise06, HKW03, AA13, NF15, RLL10, AT12, LL11]. But, in contrast to
fault detection, it is not assumed that a detected anomaly is faulty behaviour. A
semi-automated process supporting to decide if a detected anomaly is intended or
at least acceptable can be found in [Lad+14a]. It is assumed that the behaviour of
the interdisciplinary system is fully discrete on its control interface, that is it can
be observed in terms of input/output events of the software. This assumption holds,
for example for discrete manufacturing systems [Chr06]. However, further methods
also deal with continuous systems [Ise06] or hybrid systems [NF15]. The models to
compare with are assumed to be time-based models having the corresponding events
annotated on their transitions. The method introduced here describes a subset of the
method introduced in [Lad+15a], where also a learning algorithm for automatic
model generation is presented.

250 J. Jürjens et al.

9.6.6 Summary

The here presented approach implements parts of the three-layered framework
(Fig. 9.1) for production systems at run time. On the bottom layer, the interdis-
ciplinary process of a production system is monitored in a non-invasive manner
based on input/output signals of the production system. On the middle layer, this
monitoring data are analysed regarding behaviour anomalies. Therefore, an anomaly
detection method for Cyber-Physical Systems was presented that compares actual
system behaviour at run-time with intended system behaviour expressed in signal-
based models. If the observed behaviour contradicts the behaviour of the models, an
anomaly as a potential risk is reported on a high-level model description to the top
layer of the general framework. At this level, the conclusion regarding the potential
risk and impact on the overall security and a suitable reaction to the anomaly can
be made. The approach was evaluated on different scenarios of the PPU case study.
Future work regarding anomaly detection includes to detect failures of the system
based on an interdisciplinary a priori system model and finding anomalies of one
production system by comparing its behaviour with the cyber-physical context of a
distributed knowledge carrying network.

9.7 Conclusion

Preserving security in evolving software systems is challenging due to four main
issues: First, security-relevant knowledge may only be available in a non- or semi-
formal manner. Second, the impact of available knowledge to the security of the
system at hand needs to be assessed. Third, as soon as the system is deemed
insecure, a proper reaction to re-establishing security must be derived. Fourth,
reactions may need to be performed automatically in a running software system.

In this chapter, we addressed these four challenges:

Diverse non- or semi-formal sources of security knowledge. The approach
shown in Sect. 9.2 harnesses natural language processing to identify security
requirements in given requirement descriptions, thus allowing to select a small
portion of the overall requirements that deserve specific attention from experts.
Security requirements can be captured systematically using a concept of nested
ontologies that represent global and system-specific security knowledge. The
approach in Sect. 9.3 can then be used to create a formal bidirectional mapping
between security model information attached to architecture specification models
and the program code that implements the security architecture. The approach
in Sect. 9.4 extends the security knowledge by formalising and documenting
contextual information from—if only—implicitly made assumptions about the
security-related design decisions and from the system run time. These explicitly
captured context prerequisites provide a formal relation between threats or
vulnerabilities and security patterns on architectural level.

9 Maintaining Security in Software Evolution 251

Assessing the impact of new security knowledge. The approach in Sect. 9.2
includes a concept of co-evolution rules that are triggered by specific changes
to the security knowledge. The rules are designed in such a way that security
weaknesses resulting from the changed knowledge can be detected and repaired.
The approach in Sect. 9.3 relates security information to architecture model
elements, which is also used for monitoring the application security. The
approach in Sect. 9.4 uses the captured security prerequisites to assess the
architectural validity of the security elements. In case of evolutionary changes to
the software itself or in its context, prerequisites are used as a parameter for the
architectural security analysis to check whether an attack type can then exploit
a vulnerability or whether a security pattern still mitigates a specific threat.
The approach in Sect. 9.5 proposes the use of run-time monitors for security
properties required by the system design. Using techniques like process mining
and heuristic indicators, raw monitoring data can be used to map running code to
parts of the system design. The approach also proposes to compare anticipated
and actual system behaviour to detect suspicious behaviour; however, it leaves
open how this comparison is realised. A solution for the domain of production
automation system is offered by the approach in Sect. 9.6, which expresses
behaviour in learned models as a system specification, which is compared to
actual system behaviour to find relevant violation at run time. These anomalies
are provided to a human operator as high-level descriptions of suspicious
behaviour.

Guiding architects and developers to (re)establish security. The approach in
Sect. 9.2 proposes co-evolution steps to the human developer. A model-based
security verification strategy is used to efficiently determine whether a partic-
ular co-evolution restores security requirements that were satisfied before the
evolution step. The approach in Sect. 9.4 persists the extended knowledge in
reusable extensible model-based catalogues. They are integrated into software
architectures using tailored profiles and support architects in decision-making
processes in case evolutionary changes impact the secure state of the system. The
approach in Sect. 9.6 provides identified anomalies to a human operator as high-
level descriptions of suspicious behaviour. By establishing an anomaly detection
mechanism at run time, the approach guides human operators to find potential
vulnerability in a complex, interdisciplinary environment in order to allow him
to (re-)establish security by adapting the CPS or its environment.

Adapting the system to ensure and restore security. The approach in Sect. 9.5
makes a system run-time adaptable to realise ad hoc reactions to security
incidents. By providing adequate precautions at design time, such as alternative
components or fail-safe states, the system can be adapted at run time by switching
between the available components or deactivating critical system parts. This way,
the risk when a security incident occurs during run time is reduced.

252 J. Jürjens et al.

In concert, these contributions allow to systematically capture, evaluate, and react
to the evolving security knowledge. Based on these contributions, architects and
developers are guided in addressing possible changes to the security knowledge
and the resulting security loopholes in advance. Rather than in the ad hoc security
engineering style of “fixing loopholes”, security is managed in a systematic and
by-design manner, thus allowing to better protect valuable assets in the face of a
constantly changing environment.

9.8 Further Reading

Capturing and Leveraging Context Knowledge to Preserve Security Require-
ments During Design and Run Time At the time of writing, there is ongoing
work on improving this part of the approach, especially focusing on the run-time
phase and coupling design time and run time. Initial publications already exist
[Bür+18, VKK17]. Moreover, research results are brought into the CARiSMA
platform [Ahm+17].1 Relevant results also have been produced by taking part in the
ViSion project [AJ16].2 The project is focused on privacy, which can be considered
highly related to security. The contribution focuses on model-based privacy analyses
of socio-technical systems.

Integrating Security Models with Program Code The integration of architecture
models with code is subject to the work of Konersmann [Kon18]. It is based on
the idea of embedded models by Balz [Bal11]. The tools for creating and executing
translations between architecture-related program code and models are available
on https://codeling.de. Konersmann et al. describe variants of this approach, for
example for integrating deployment model information [KH16] or behaviour
models [KG15] with program code and the use of integrated model information
for locating and understanding errors [Kon14].

Anomaly Detection in Production Systems at Run Time Modelling the state
of production system in signal-based Petri Nets has been presented by Ladiges
et al. in [Lad+15a]. Further, anomaly detection is also defined for the material
flow of a production system in [Lad+15c]. Malicious anomalies and their relation
to production system is classified by Reichert et al. [Rei+17]. How to handle
such anomalies within an ongoing evolution process is shown in [Lad+14a], and
a fitting semi-automated decision process with a human in the loop targeting

1https://rgse.uni-koblenz.de/carisma/.
2https://cordis.europa.eu/project/rcn/194888_en.html.

https://codeling.de
https://rgse.uni-koblenz.de/carisma/
https://cordis.europa.eu/project/rcn/194888_en.html

9 Maintaining Security in Software Evolution 253

anomalies of production system is presented in [Lad+14b]. Finally, Haubeck et al.
[Hau+14a, HLF18] lay out how changes and their resulting anomalies can be
managed within a knowledge carrying software.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	9 Maintaining Security in Software Evolution
	9.1 Foundations
	9.2 Design Time: Leveraging Knowledge from Natural Language for Design-Time System Adaptation
	9.2.1 Overview
	9.2.2 Capturing Security Requirements Using Natural-Language Processing
	9.2.3 Representing Security Knowledge Using Ontologies
	9.2.4 Rule-Based Model Co-evolution
	9.2.5 Related Work
	9.2.6 Leveraging Security Knowledge to Infer Adequate Reaction to Context Changes
	9.2.7 Summary

	9.3 Integrating Model-Based Security Constraints with Program Code
	9.3.1 Codeling: Integrating Architecture Model Information with Program Code
	9.3.2 Application: Security Evolution Scenario
	9.3.3 Security Aspects in the Intermediate Architecture Language
	9.3.4 Integrating Security-Architectures with Code Using the Model Integration Concept
	9.3.5 Related Work
	9.3.6 Summary

	9.4 Contextual Security Patterns
	9.4.1 Security Challenges in Software Evolution
	9.4.2 Contextual Security
	9.4.3 From Design Patterns to Security Patterns
	9.4.4 Security Patterns as a Means for Contextual Software Security
	9.4.5 Related Work
	9.4.6 Summary

	9.5 Self-adaptive Security Maintenance at Run Time by Identifying Suspicious Behaviour
	9.5.1 Overview
	Application: Running Example

	9.5.2 Capturing Context for Security Adaption
	9.5.3 Leveraging Run-Time Information to Support Design-Time Security Adaption
	9.5.4 Heuristics-Based Run-Time Assessment to Detect Security Requirement Violations
	9.5.5 Adaption During Run Time
	9.5.6 Related Work
	9.5.7 Summary

	9.6 Anomaly Detection for Evolving Software Controlled Production Systems at Run Time
	9.6.1 Overview
	9.6.2 Detection Model: Machine State Petri Net
	9.6.3 Anomaly Detection Mechanism
	9.6.4 Example: Using the PPU Case Study
	9.6.5 Related Work: Finding Behaviour Anomalies
	9.6.6 Summary

	9.7 Conclusion
	9.8 Further Reading

