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Anja Kleebaum, Marco Konersmann, Michael Langhammer, Barbara Paech,
Michael Goedicke, and Ralf Reussner

In this chapter, we elaborate on how design decisions are made, documented,
and exploited during software evolution. We emphasise the importance of design
decisions, in particular in the context of continuous software engineering. We detail
the challenge of the intrusiveness of rational decision-making, documentation, and
exploitation of design decisions and the challenge of ensuring consistency between
design decisions and software artefacts.

The main contributions of this chapter are three approaches to a continuous
design decision support: First, we present an approach that supports developers in
design decision-making using a catalogue of design patterns. Second, we present an
approach to support the awareness for documented design decisions by integrating
the decision documentation with the underlying source code. Third, we present how
short-cycled practices in continuous software engineering can be used to support the
documentation and exploitation of design decisions.
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All three approaches contribute to the guiding themes knowledge carrying
software and methods and processes for evolution of the priority program.

6.1 Introduction

Continuous Software Engineering (CSE) is a software engineering process in which
developers continuously change the software while keeping it in a releasable
state [KB17]. CSE means to develop, release, and learn from software in very
short rapid cycles [Bos14]. It incorporates agile practices and involves activities
such as continuous integration, delivery, and deployment [SAZ17, Joh+18b]. The
emergence of CSE is driven by a growing need for flexibility and rapid adaption in
the current software environment [FS17].

Software developers and architects continuously make design decisions while
they develop and evolve software. They make decisions on the requirements to be
addressed, the design artefacts (e.g. architectural components, packages, interfaces,
classes, and methods) to be created or the design patterns to be applied. For example,
it is a design decision to apply an adapter design pattern instead of changing an
existing interface when adding new features to a software. The knowledge of the
developers on the design decisions they make is called decision knowledge. In
particular, decision knowledge comprises the knowledge about the problems, the
decisions they address, solution approaches, their context, and rationale in terms of
arguments, criteria, and the assessment of solution alternatives.

Decision knowledge should be communicated within a development team so that
every developer knows and considers existing decisions [Bru+14]. When developers
evolve software, it is important for them to reflect and build on former decisions.
Otherwise, they might make inconsistent decisions and are likely to contribute to the
erosion of the software architecture or introduce other quality problems [Cle+13,
Cap+16]. Reflecting on former decisions is particularly important for long-living
software systems where many decisions build on one another.

The documentation of decision knowledge is important for several reasons:
First, many different developers might be involved at different times. Thus, they
cannot communicate directly and rely on documented decision knowledge when
they reflect on former decisions. That means that the documentation of decision
knowledge is important to prevent knowledge vaporisation [Cap+16]. Decision
knowledge vaporises quickly; that is, if developers do not capture decision knowl-
edge immediately, it will never be captured and thus will not be available later
[JBOS]. Tacit decision knowledge (cf. Chap. 5) enlarges the risk of misunderstand-
ings and errors during evolution or maintenance. Second, the documentation of
decision knowledge makes the criteria for the design decisions explicit that might
otherwise be overlooked. This promotes a more rational decision-making process.
Third, documented decision knowledge is valuable to support future changes. It sup-
ports change impact analysis, requirement validation, and long-term maintenance
and keeps developers informed about underlying architectural decisions [Cle+13].
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While there is clearly a need for decision knowledge documentation, in practice
this is often not performed [APM16]. In practice, decisions are mostly made and
documented in a naturalistic way [ZCMO7, Hes+16]. This means that only a part of
the decision knowledge—often only the decision—is documented, which impairs
the rational decision-making. Humans tend to overlook what is missing and are
subject to cognitive biases [Raz+16]. Furthermore, if the arguments for the decision
are not documented, other developers might not understand the decision or might
not be convinced.

Recently, various techniques emerged that try to reconstruct decision knowledge
by mining written text from informal sources such as chat messages, which is
referred to as extractive summarisation [NHJ16]. These techniques are promising
in identifying decision knowledge; however, the knowledge may be incomplete,
outdated, or hard to access later. In other cases, the knowledge is not captured
at all but only resides in the developers’ heads as tacit knowledge. Researcher
attempt to infer tacit knowledge by abstractive summarisation of software artefacts
such as source code changes [Cor+14]. However, Robillard et al. confirm that it is
unlikely to infer complex information such as rationale by mechanical extraction
of facts from software artefacts [Rob+17]. Therefore, summarisation techniques
only partially help to reconstruct decision knowledge in case they are applied
retrospectively. Decision knowledge needs to be explicitly documented in order to
preserve it. It is important to note that easy exploitation of the decision knowledge
motivates developers to document it, as the developers themselves can profit from
the documentation [BBOS].

CSE provides many practices for a continuous change [KB17]. These can
be used for a continuous design decision documentation. Our long-term vision
is an on-demand decision documentation as part of the on-demand developer
documentation suggested by Robillard et al. [Rob+17]. We envision that developers
continuously capture and reflect decision knowledge during CSE. Our goal is
to support developers in this continuous capture and reflection, in particular by
performing rational decision-making. The following three developer tasks should be
lightweight; that is, they should require as little effort as possible: rational decision-
making, documentation of decision knowledge, and its exploitation.

6.1.1 Challenges for a Continuous Design Decision Support

Tool support to manage decision knowledge can be characterised by its intrusiveness
in the software development process [Dut+06]. Tools that fit into the development
context are less intrusive and will more likely be used [KCDO09]. Such tools do
not require additional effort (e.g. for installing or starting a separate tool) and are
thus also lightweight. For example, a developer can capture the design decision
for applying an adapter design pattern within a commit message instead of in a
separate tool. Rational decision-making, documentation of decision knowledge, and
its exploitation should be non-intrusive in the context of the CSE process. It is a
challenge to minimise the intrusiveness of a continuous design decision support.
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Challenge regarding intrusiveness: how to integrate rational design decision-
making, documentation, and exploitation in software engineering practices

To exploit decision knowledge, it is important that the design decisions are
consistent (a) with former design decisions and (b) with the artefacts, for example,
with the requirements, architectural software design, and code. Consistency means
that design decisions are documented, as well as linked to and realised, in the
artefacts they relate to. For example, the design decision to apply the adapter design
pattern should be linked to the code that implements the pattern. Then developers
can reflect on this decision when they change the code. Developers need to reflect
former decision knowledge during decision-making, so that the design decisions
are consistent with each other. There are two types of former decision knowledge:
First, general decision knowledge is documented in external knowledge bases (e.g.
about design patterns). Second, new design decisions build on former decision
knowledge specific to the software development project. Especially in long-living
software systems, much decision knowledge accumulates. Documented decision
knowledge might be invalidated during software evolution and needs to be updated.
Not only decisions need to be consistent with each other. The decision knowledge
also needs to be consistent with the artefacts. Moreover, the design artefacts, for
example architectural software design and code, also need to be consistent with
each other to ensure that the decisions are actually implemented. It is a challenge to
document and maintain decision knowledge consistent with the other artefacts and
with former decision knowledge.

Challenge regarding inconsistency: how to ensure consistency between decision
knowledge and artefacts

6.1.2 Solution Approaches for Design Decision Challenges

In this chapter, we present approaches that address both challenges. The approaches
try to find a balance between intrusiveness and consistency support. A more
powerful support typically requires separate tools, which are more intrusive.
Also, the approaches focus on different kinds of decision knowledge. The first
approach promotes rational decision-making by providing software designers with
a catalogue of questions that support them in choosing a design pattern. Thus,
this approach focuses on consistency with external decision knowledge, which is
presented in a separate tool. The second approach focuses on the consistency among
decisions within a project, architecture, and code. It ensures that design decisions
are documented and related to design and implementation artefacts. Thus, this
approach improves the consistency relation between these artefacts. It incorporates
the decision knowledge captured by the design pattern approach. The third approach
provides non-intrusive integration of the documentation and exploitation support
during CSE and lightweight traceability for consistency. During CSE, developers
usually manage code and other development knowledge in a Version Control System
(VCS) and issues in an Issue Tracking System (ITS) [Sai+17]. The third approach
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integrates the documentation and exploitation of decision knowledge into practices
relating to the VCS and ITS. Thus, it does not require a separate tool. It uses
extractive and abstractive summaries to support the transition from naturalistic
to rational decision knowledge documentation. Furthermore, it identifies relevant
decision knowledge based on traceability links to support consistent decision-
making. These approaches showcase different ways to support decision-making,
documentation, and exploitation. The choice of one of them depends on the context.

6.1.3 Structure of This Chapter

This chapter is structured as follows: Sect. 6.2 sketches the Decision Documentation
Model (DDM) as a foundation of this chapter. The DDM allows developers and
architects to document decision knowledge incrementally and collaboratively. Sec-
tion 6.3 presents the approach that supports the decision-making regarding design
patterns using a pattern catalogue and documenting such decision knowledge.
Section 6.4 presents the approach to support the documentation and consistency
by integrating design decision models with program code. In Sect. 6.5, the approach
focusing on short-cycled CSE practices is introduced. Section 6.6 presents related
work. Section 6.7 discusses and concludes this chapter and provides an outlook.
Section 6.8 provides references for further reading.

6.2 Foundations

We represent decision knowledge based on the DDM by Hesse and Paech [HP13].
According to the DDM, decision knowledge is documented as decision components,
which can be nested and refer to other knowledge. Figure 6.1 shows the key
decision components of the DDM (depicted with yellow background), as well as
additional decision components used in the pattern catalogue in Sect. 6.3 (depicted
with white background). In Fig. 6.1, decision component is an abstract class that
can only be instantiated through its subclasses. Related knowledge elements can
be decision knowledge or software artefacts such as requirements, architectural
design, code, and test cases. Decision components are the decision problem to
be solved (issues or goals), solution (alternatives or claims), context information
(assumptions, constraints, or implications), and rationale (arguments or assess-
ments). The DDM subsumes decision elements used in other approaches [PDH14]
but does not prescribe any components for decision documentation. Therefore, it
supports incremental documentation of decisions and in particular both naturalistic
and rational decision-making. Any part of the decision knowledge can be captured
as soon as it is available. In addition, any number of stakeholders such as developers,
architects, and requirement engineers can collaborate while documenting decisions.
Each stakeholder contributes that part of the decision knowledge they know best.
The requirement engineer can, for example, add constraints, which have to be
reflected for a particular solution.
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Fig. 6.1 Decision documentation model (DDM) adapted from [HP13]

The DDM has been applied in an empirical study on Firefox issue reports
[Hes+16]. This showed that the DDM can adequately reflect the decision knowledge
captured in issue trackers. The dominance of naturalistic decision-making in this
study confirms the need for an incremental and collaborative decision documen-
tation. In addition, the DDM has been applied in a case study on design session
transcripts [HP16]. This confirmed that the DDM also adequately reflects decision-
making in a team. In particular, the usage of the DDM made complex decision
knowledge structures in the design sessions explicit.

6.3 Using a Design Pattern Catalogue to Make Design
Decisions

In this section, we explain the Architectural Modelling with Design Decision
Documentation (AM3D) [Durl4] approach that supports software architects and
software developers in the process of decision-making. For this purpose, it uses a
pre-defined pattern catalogue that contains patterns and pattern-specific questions
as main artefacts. Software architects using the approach need to answer a set of
questions to get the correct pattern that solves their current problem. Compared to
the classical software architecture process, the advantage of this approach is that the
design decisions become more rational and less naturalistic. Furthermore, the design
decisions are documented and made explicit and thus are easier to understand by
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other software architects and software developers. The AM3D approach supports
rational decision-making consistent with former external decision knowledge. In
the following, we describe the approach in detail and apply it to the Common
Component Modeling Example (CoCoME) case study. The details of the pattern
catalogue and the decision-making process are presented in the dissertation of
Durdik [Dur14].

This section is structured as follows: Sect. 6.3.1 explains the motivation for using
a pattern catalogue. In Sect. 6.3.2, we explain how a pattern catalogue can be used
for decision-making. In Sect. 6.3.3, we show how the presented approach can be
applied to our current example.

6.3.1 Motivation for Using a Pattern Catalogue

In the domain of software engineering, patterns are widely used to solve common
problems. In the last decades, various pattern catalogues have been introduced, for
example by Gamma et al. [Gam+95] and Buschmann et al. [Bus+96]. If software
architects and software developers need to solve a specific problem, they can often
use one of the already existing patterns. Choosing the correct pattern for a given
problem, however, is not an easy task as there are many patterns solving similar
problems. Another problem that arises using patterns is that they are often used
wrongly. Hence, choosing the correct pattern and using it correctly is a difficult and
error-prone task.

6.3.2 Decision-Making Process Using a Pattern Catalogue

In this section, we explain the decision-making process, which is used to choose
the correct pattern. This includes the presentation of the pattern catalogue and the
activities to make the design decisions explicit.

Most sources of patterns, such as [Gam+95], contain patterns in a free-text form.
The advantage of these sources is that one can learn about patterns, their benefits,
their usage, and others. However, their disadvantage is that the information is not
structured, and it takes a lot of time to gain knowledge about patterns that can be
used to solve a specific problem. Often, it is also unclear which pattern form shall
be chosen to solve a given problem.

The design pattern catalogue of the AM3D approach aims to overcome these
disadvantages. Its main purposes and goals that are relevant for the decision-
making process are (1) to present structured information about patterns, (2) to allow
for semi-automated documentation of the pattern usage, and (3) to support goal-
oriented requirement engineering.

The three main information parts stored in the pattern catalogue are (1) general
information about the pattern, (2) questions annotated to the pattern, and (3)
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Table 6.1 Information about a pattern stored in the pattern catalogue [Durl4]

Category Detailed attribute ~ Short description
General Name A name for the pattern
information
Type A type for the pattern, for example object-oriented
pattern or security pattern
Category The category of the pattern, usually described by pattern
authors; for instance, behavioural patterns are a category
by Gamma [Gam+95]
Information The original source of the pattern
source
ID A unique identifier for the pattern
Goal A high-level description of the pattern’s goal,
respectively the problem that can be solved using the
pattern
Description A brief description of the pattern, which is intended for
users in order to understand the concept of the pattern
Advantages Advantages of the pattern, which come with the usage of
this pattern
Drawbacks Highlighting problems/drawbacks of the pattern
Keywords Keywords to characterise the pattern

Quality attributes ~ The pattern’s impact on quality dimensions of the
software system, for example performance
increased/decreased

Relationships Relations to other patterns, divided into three

dimensions: (1) recommended co-patterns, (2) similar
patterns, and (3) excluded patterns

Variants Variants of the pattern
Question Goal Questions on the goal of the user, that is whether the
annotations user likes to solve a problem in a specific way
Intent Questions on the intent of the user, that is whether the
user intents to have a specific behaviour in a software
system
Consequence Questions on consequences, that is whether some

consequences are acceptable if a specific pattern is used

the structure of the implementation as a Unified Modeling Language (UML)-like
diagram. Table 6.1 shows the details for the general information and the questions.
The questions are divided into the following four categories: (1) questions regarding
the goal of the pattern, (2) questions regarding the advantages of the pattern,
(3) questions regarding the drawbacks of the pattern, and (4) questions regarding
variants of the current pattern.
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Table 6.2 Questions for the fagade pattern [Durl4]

Type Question

Goal Would you like to provide a unified interface to a set of interfaces in a
subsystem?

Intent Would you like to minimise the communication and dependencies

between subsystems?

An additional functionality wrapped into the unified interface is not your
intent? (otherwise — proxy)

Is a stateless unified interface your intent? (otherwise — proxy)

Is it desired that subsystem classes know nothing about the facade
object(s)? (otherwise — mediator)

A new interface for an object is not your intent? (otherwise — adapter)
Consequence Is a potential performance bottleneck not an issue?

Gain general information about a desi@
Choose between simi@
Check and apply @
Elicit and prioritize requirements@
Retrieve information about pa@

User Understand existing pattern des@

Understand rationale of an architectura@

Trace impact caused by changed@

Check architectural implementation violations@

>0

Fig. 6.2 Use cases for the pattern catalogue [Durl4]

As an example, questions for the facade pattern are shown in Table 6.2. The
structured information about the patterns allows to ask structured questions to the
users and to present appropriate patterns for the problem that the users want to solve.

The pattern catalogue can be used in multiple use cases during the development
process. The use cases are shown in Fig. 6.2. In this chapter, we focus on the main
use case check and apply a pattern, which involves making the design decision
for a specific pattern and documenting this decision. The remaining use cases are
explained in [Dur14]. Figure 6.3 shows the activity diagram of the use case. The first
step is to analyse the problem based on the given requirements. The second step
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Fig. 6.3 Activity diagram of checking and applying a pattern [Dur14]

is to pre-choose a pattern based on one’s own knowledge or based on an expert’s
knowledge. Next, the pattern catalogue is used to find and evaluate the pattern. The
evaluation is done by using the checklist, which is attached to the pattern, that is the
questions for the pattern are evaluated again to clarify whether the chosen pattern is
a correct one for the given problem. If the pattern is suitable to solve the problem,
the design decision has been made. The next steps are to document the decision and
to update the architectural model with the newly chosen pattern. If the pattern is
not suitable, the decision that the pattern has not been chosen and the reason why
are documented. Then the iteration starts from the beginning by re-analysing the
problem and looking for a different pattern. If, however, no pattern can be found
that solves the problem, another solution needs to be found, for example clarifying
the requirements.

In summary, the AM3D process guides users through the process of decision-
making. It also stores the answers and the decision in a model, that is the decision
knowledge is made explicit and is documented. The main advantages of using
the catalogue and the structured process are as follows: (1) The rationale and
other decision knowledge of the design decisions to apply a specific pattern is
documented. (2) Through systematic pattern evaluation with the help of question
annotations, software developers and software architects are supported in applying
design patterns and design pattern variants correctly.

The AM3D approach has been evaluated in a controlled experiment with 20
students [Durl4]. During the evaluation, the technical questions concerning the
patterns have been evaluated as well. For the evaluation, the approach was compared
to a standard pattern catalogue. During the evaluation, the students had to face two
scenarios: In the first scenario, a new design decision had to be made, whereas in
the second scenario an existing decision had to be re-evaluated. The students who
used the AM3D approach had better results in both scenarios. The results for the
first scenario are statistically significant, while the results for the second scenario
are not.
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6.3.3 Application to the Case Study

In this section, we show an application of the AM3D approach to a CoCoME
evolution scenario. In this scenario, the CoCoME sales system is extended by
new payment possibilities. Up to now, customers could only pay via debit card.
Payments are initiated by the CashDesk component. Currently, this component
communicates with an external bank (TrivialBankServer component) via the
IBank interface. The IBank interface defines the methods validateCard and
debitCard. Figure 6.4 shows an excerpt of the CoCoME architecture as a Palladio
Component Model (PCM) repository diagram [BKRO09].

Requirements for modern payment possibilities such as PayPal and Bitcoins
arise. The new payment possibilities are to be implemented, while the existing
payment possibility using a bank server will still be supported. We focus on the latter
case and assume that the decision process is executed using the AM3D approach.

In this scenario, the generic IPayment interface is introduced that defines
the authenticate and pay methods. For using the existing component
TrivialBankServer together with the new IPayment interface, the adapter
pattern and the facade pattern are taken into account by software architects. Hence,
they need to evaluate the two patterns using the design pattern catalogue. First, the
facade pattern is evaluated. As we can see in Table 6.2, however, the first question
for the facade pattern is answered with no because no unified interface to a set of
interfaces needs to be provided. Thus, the architects know that the facade pattern
is not the correct pattern in this case. As a next pattern, the adapter pattern is
evaluated. Therefore, the questions in Table 6.3 are used. Even though the questions
are technical and quite detailed, the evaluation showed that they can be answered
correctly by intended users of the AM3D approach. As all the questions for the
adapter pattern can be answered with yes, the architects know that they can use
the adapter pattern for the implementation. The decision knowledge is illustrated

£ cashdeskline

<<Requires>>

£* cashDeskModel

<<Provides>>
£ TrivialBankServer

¥ SEFF <validateCard> © 1Bank
ﬁ SEFF <debitCard> = | void validateCard() = <<Requires>>
void debitCard()

PassiveResourceCompartment =

ComponentParameterCompartment @ CashDeskModel_Internal
<<Requires>>

PassiveResourceCompartment

ComponentParameterCompartment

Fig. 6.4 An excerpt of the CoOCoME architecture in PCM before the evolution scenario
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Table 6.3 Questions for the adapter pattern

Type Question

Goal Would you like to convert an interface of a class (or an object) into
another interface that clients expect?

Intent Would you like to make interfaces of incompatible classes compatible?
Would you like to change the interface of an existing object (a new
interface design for an object)? (otherwise — proxy or decorator)

Consequence Are you aware of the size of the code you have to write and maintain to
adapt the class?

Alternative Decision
Use a similar pattern: ——< Adapt between
facade, mediator, proxy IPayment and IBank interface
lssue Goal
How can we make the Convert the IBank interface

TrivialBankServer accessible of the TrivialBankServer class (or an object)
via the interface IPayment? into the IPayment interface that clients expect
How can we make interfaces

of incompatible classes compatible?

Alternative
Class adapter, includes multiple Solution
polymorphic interfaces by implementing Object adapter, contains an instance
or inheriting both the interface of the class it wraps and makes calls
that is expected and the interface into the instance of wrapped object
that is pre-existing / \

Pro
Additional interface without
direct object modification and
improved interoperability of classes

Contra
Decreased maintainability and
increased code complexity

Fig. 6.5 Decision knowledge for the adapter pattern according to the DDM

in Fig.6.5 (according to the DDM, cf. Sect.6.2). From the pattern catalogue,
they also get an example for the adapter pattern and adapt it to the CoCoME
components and interfaces. They adapt the existing IBank interface using the
TrivialBankServerAdapter component in order to make the component
TrivialBankServer compatible with the new IPayment interface. Figure 6.6
shows the resulting architectural structure.

6.4 Integrating Design Decision Models with Program Code

During the evolution of software systems, documented design decisions are often
not updated. The documented design decisions, design artefacts, and the program
code are then no longer consistent. Even worse, the documented design decisions
may be misleading, when they document a revised decision, and are neither updated
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g PaypalPayment @ cashdeskline
w SEFF <authenticates <<Requires>>
&j SEFF <pay> o IPayment PassiveResourceCompartment
PassiveResourceCompartment <<Provides : void authenticate() oy PO ComponentParameterCompartment
ComponentParameterCompartment = void pay()
<<Provides>> <=Requires>> E CashDeskModel
£] BitcoinPayment £ ] TrivialBankServerAdapter
ﬂ SEFF <authenticate> <ebrovicagez tf SEFF <authenticate>
tf SEFF <pay> tf SEFF <pay>
PassiveResourceCompartment PassiveResourceCompartment @ CashDeskModel_Internal
ComponentParameterCompartment ComponentParameterCompartment
<<Requires>> ComponentParameterCompartment
@ TrivialBankServer
¥T SEFF <validateCard> © Bank
&j’ SEFF <debitCard> i_ void validateCard()
<<Provides>> | | - | void debitCard()

PassiveResourcaCompartment

ComponentParameterCompartment

Fig. 6.6 An excerpt of the CoOCoME architecture in PCM after the evolution scenario

nor marked as outdated. In this section, we describe an approach to integrate
decision knowledge and software architecture information with program code.
The tool Codeling [Kon18, Kon16] implements an approach for integrating model
information with program code. Codeling is used to create bidirectional translations
between program code and abstract models of that code. By documenting design
decisions within the program code and relating them to architectural design
artefacts, the documentation of design decisions is visible during the development
and evolution of a system. The goal is to improve the documentation of decision
knowledge, the consistency between software models and code, the evolvability,
and the understandability of the software.

In Codeling, we create mappings between the concepts of architecture implemen-
tation languages and abstract software models. As an example, we define mappings
between components defined in the UML and components defined with the Java
programming language extended with a component framework. These are the
artefacts to which decision knowledge is attached according to the DDM (Fig. 6.1).
Therefore, Codeling can document design decisions that were made using the
approach described in Sect. 6.3. We use these mappings to automatically propagate
changes in the model or the program code to the other representation. As the
mapping between these artefacts and program code is established with Codeling,
it is possible to attach decision knowledge to these program code elements. When
all modelled information has a representation in the program code, a separate model
document is not necessary any more. It can be extracted from the program code
using the defined mappings.

In Sect. 6.4.1, we briefly describe Codeling and its application to software archi-
tectures. Here, we address the challenge to ensure consistency between architectural
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software design and code. Section 6.4.2 extends the approach with a notation for
decision knowledge. Here, we extend the consistency relation between architectural
design and code with design decision knowledge. We also address the challenge
to integrate the documentation of decision knowledge into software engineering
practices, especially into coding and modelling. Section 6.4.3 shows the application
of Codeling on the current example of Sect. 6.3.3.

6.4.1 Integrating Architecture Models with Code

Specifications of software architectures can be seen as abstract views on relevant
design decisions. The goals of architecture specifications are diverse, generally
centering on the design, communication, or analysis of the subject of specifi-
cation. A set of abstract concerns commonly agreed upon seems to exist for
defining software architectures, as manifested by the standard ISO/IEC 42010
[ISO11b]. These include the general structure of a system, usually expressed in
components, interfaces, and their interconnection. They are often accompanied by
abstract behaviour descriptions or quality aspects. During software development,
the architecture is realised in the software artefacts, including the program code,
configuration, and the use of existing platforms. The goal of the implementation
is an executable system. The implementation of software architecture is driven by
industry standards and platforms that define standard elements such as compo-
nents and interfaces. Languages for architecture specification and for architecture
implementation have common concerns (see e.g. [MBG10]), typically at least the
definition of components, interfaces, and their interconnections. However, they have
different foci and include different types of architectural designs and different details
added to the architectural description.

Codeling creates a systematic mapping between architecture specification model
elements, relations, and attributes and their implementation based on standard-
ised or project-specific architecture implementation languages. These mappings
specifically define places where arbitrary other code can be added. This kind of
mapping allows to extract architecture specification models from program code and
to propagate changes in these models back to the code.

Codeling comprises three parts. Figure 6.7 sketches an overview of these parts
and their relations. The figure describes artefacts of the approach with rounded
boxes and translations between these artefacts with arrows. The parts are used to
bidirectionally translate between program code and a specification model expressed
in an architecture specification language. The parts are underlined in Fig. 6.7.

Intermediate Architecture Language The Intermediate Architecture Language
(IAL) mediates between architecture implementation models and architecture speci-
fication models. The IAL is implemented with an Ecore-based [Ste+09] meta model.
It has a small core with the common elements of architecture languages. The core
is extended with profiles [Lan+12] to represent, for example different kinds of
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Fig. 6.7 The parts of Codeling for integrating architecture model information with program code

Model Program Code in Java

[:ComponentType]
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@ComponentTypel(version="1.0"))
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s

name = |"BitcoinPayment"|

version = "1.0" } ‘L. ........ i

Entry Point

Fig. 6.8 An exemplary bidirectional model-to-code mapping from the MIC

interfaces, component hierarchies, or quality attributes. Models that are expressed
with the IAL are called translation models.

Model Integration Concept The Model Integration Concept (MIC) describes bidi-
rectional formal mappings between program code structures and an implementation
model. The implementation model is a model representation of the architectural
aspects of the code. For example, a Java type declaration with a specific annotation
might represent a component type, and annotation parameters represent attributes
of this component. Figure 6.8 gives an example of two combined mappings.
A modelled component type is represented as a Java type declaration with the
annotation ComponentType. The type’s name is mapped to the component type’s
name. The modelled attribute version and the value are mapped to an annotation
parameter assignment. Bidirectional model-to-code mappings in the MIC may
include entry points. Within entry points, arbitrary other program code can be
inserted.

In Codeling, the program code also contains information that is not part of an
architecture implementation language but is only subject to a specification language.
For example, many architecture implementation languages do not describe hierar-
chical architectures. The hierarchy information is added to the program code, for
example using package structures. This information is forwarded directly to the
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translation model using the MIC. The MIC implements bidirectional transforma-
tions. Therefore, changes in the model are propagated to code changes.

For Codeling, we have developed a set of translation templates between models
and code. They generically describe how modelled objects, attributes, and refer-
ences can be represented in program code, so that bidirectional translations can be
implemented. Codeling consists of a tool to generate automated translations, by
relating these templates to specific meta-model elements [Kon18]. The tool then
generates translation classes in Java, which are executable within Codeling.

Architecture Model Transformations Bidirectional architecture model transfor-
mations translate between implementation models, translation models, and specifi-
cation models. Architecture implementation models are translated into specification
models. Changes to a specification model are propagated to the corresponding
implementation model.

6.4.2 Design Decisions, Rationale, and Patterns in the IAL

Section 6.3 presents the specification language AM3D for design decisions and
rationale applied to PCM diagrams. To integrate design decisions and rationale
with Codeling, (a) the IAL must be able to handle this information. This makes
design decision information available to Codeling. Then (b) transformations must
be created between the AM3D and the IAL to make the information available to the
existing tool environment of AM3D. Finally, (c) mappings must be created between
the IAL and the program code.

The IAL can handle decision knowledge (a) via corresponding profiles. These are
language extensions for expressing design decisions with rationale. Decisions can
either be decisions for the existence or design of specific components or the decision
for implementing a specific architectural pattern. Decisions are accompanied by
rationale. The rationale can be expressed with informal text or by answering
questions of a catalogue, as it is described in Sect.6.3. We also added meta-
model elements for describing instances of architecture patterns and the roles of
components and connectors within them, as described in Sect. 6.3. We implemented
transformations between the IAL and AM3D (b) with triple-graph grammars!
(TGG) [Sch94b]. TGGs describe a bidirectional relationship between language
elements. For example, they can be used to define that a decision element in the
IAL corresponds to a decision element in AM3D. Automated synchronisation rules
can be derived from these relationships.

Mappings between decision knowledge expressed in the IAL and Java program
code (c) have to be designed in the context of the MIC. A simplified example for
expressing the modelled decision knowledge in program code with the MIC is given

IThe IAL meta model with the design decisions and pattern profiles and transformations between
the IAL and AM3D are available under https://codeling.de.
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Model Program Code in Java
:TextBasedRationale @ecision(rationale={
— @Rationale(text=
text =[ .. ‘ "A more generic interface than the existing
+ rationale IBankLocal interface is needed. It only provides
the methods debitCard and validateCard.'])})

:Arch|tectureE|ementDeC|S|on| public interface [IPayment]<{
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public void pay();

:Interface

name = ["IPayment]

Fig. 6.9 A bidirectional example model-to-code mapping of a decision for an architectural
element with text-based rationale
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name = ‘”TriviaIBankServerAdapter”‘

Fig. 6.10 A bidirectional example model-to-code mapping of a pattern decision with question-
based rationale

in Fig.6.9. The figure shows an interface. The modelled interface is represented
with an interface definition in Java. The name of the Java interface is mapped to
the value of the attribute name. A decision with a text-based rationale is attached
to the interface. The attached decision is defined as an annotation attached to the
Java interface. The rationale is an annotation parameter. The model instantiation of
the rationale is a TextBasedRationale with a text that contains the actual, informal
rationale. The code equivalent is an instantiation of the annotation Rationale
with the parameter text with the respective content.

Figure 6.10 shows an exemplary mapping between a question-based decision for
an architectural pattern and a respective code representation. The model shows a
pattern decision attached to a component type. The pattern decision relates to an
instance of the adapter pattern. The rationale is based on the answering of questions
in a catalogue. The component type is represented as a Java type declaration with
the name of the component type and the suffix Model. The pattern decision is
represented as an annotation attached to that type. It has two annotation parameters:
The pattern references the type AdapterPattern. This type is defined in a
library. It represents the corresponding pattern. This mechanism allows for type-safe
references because the referenceable types need to implement a specific interface.
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In this example, the rationale is represented by the parameters question and
answer of the annotation Rationale.

In four case studies, Codeling has shown its applicability and usefulness for
improving the consistency between architecture models and code, and the under-
standability and evolvability of software architectures [Kon18, Chapter 10]. In these
case studies, Codeling has been used to extract software architecture models from
code, propagate changes in architecture models to the code, and to migrate between
architecture languages. Besides architectural structure, the integrated information
in these case studies also include performance annotations on operations. They
indicate the expected performance of an operation for simulation purposes. This
is comparable to design decisions as they are presented in this section. In this
section, design decisions are also attached to structural elements and have no
operational semantics for the software. Therefore, the approach presented here
can document design decisions integrated with the program code and improve the
understandability and the evolvability of the software architecture, including the
design decisions.

6.4.3 Application to the Case Study

In the context of the case study used in this chapter, Codeling is used to create a
PCM view upon the CoCoME architecture with AM3D extensions. Figure 6.4 in
Sect. 6.3.3 shows an excerpt of the PCM repository as it is extracted with Codeling.
The full repository diagram is shown in Fig. 12.4 on page 350. Table 6.4 gives an
overview of the mapping between the CoCoME code, the corresponding architec-
ture implementation language, and PCM meta-model elements. The table contains

Table 6.4 Overview of the mapping between PCM meta-model elements, CoCoME meta-model
elements, and program code structures

PCM meta-model element CoCoME meta-model element ~ Program code structures

Basic component with the ~ “Model” component Type declaration with the
name “Model” name “Model”

Basic component with the ~ “Console” component Type declaration with the
name “Console” name “Console”

Basic component with the ~ “Server” component Type declaration with the
name “Server” name “Server”
Composite component Component with children Package declaration with

package or type declarations
as subcomponents

Operation provided role Provided interface Implemented interface

Operation required role Required interface Interface instance given to
type via constructor
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the mappings relevant for adding design decisions and rationale to component and
pattern decisions.

First, we developed a meta model for describing the CoCoME architecture. This
was necessary because the original CoCoME implementation does not follow any
standard for implementing components but uses a custom style for describing archi-
tectural elements and their interconnections using plain Java. For example, it defines
three different types of components: model components, console components, and
server components. Instances of these component types are implemented using
Java type declarations with names that end with that specific suffix. The different
component types indicate different roles of the corresponding components within
the program. Second, we implemented bidirectional model-to-code transformations
between the CoCoME program code and the newly created meta model for the
CoCoME architecture.

Next, we created mappings between the CoCoME architecture meta model and
the TAL using triple-graph grammars. Design decisions and their rationale are
information that can be attached to their corresponding code elements. Figures 6.9
and 6.10 show examples of this set of transformations between models and code.
In the CoCoME example, a new interface IPayment is introduced because the
existing IBank interface did not provide the necessary operations. This decision is
attached to the new Java interface in Fig.6.9. The informal text of the text-based
rationale is added as annotation member value. Another change in the CoCoME
example is the introduction of an adapter, following the adapter pattern, to make the
TrivialBankServer accessible via the interface IPayment. Figure 6.10 shows the
integration of a pattern decision with a question-based rationale. The listing shows
how the pattern decision is documented with annotations in the Java code. The
implementation of the pattern is not shown in this figure, for readability reasons.
Documented design decisions have no operational semantics, which means that
it is not necessary to evaluate them at run time. A pattern decision references a
pattern in an annotation parameter. Here, only the decision is defined. The actual
implementation of the pattern is not evaluated with this mapping. However, such
mappings can be created with the MIC. For example, such translations would ensure
that a component type, which has the role of an adapter in an adapter pattern,
implements the respective interface and has a reference to the adaptee. The actual
behaviour of the adapter can then be implemented in entry points of the code
representation.

The model-to-code translations and model-to-model translations have to be
defined by a developer. Codeling contains tools to support the definition of
bidirectional model-to-code transformations with templates and a code generator.
Once defined, the automated translations can be used with Codeling to create
an architecture model of the CoCoME code with decision knowledge in PCM
with AM3D extensions. Changes in the model are automatically propagated to the
program code.

In summary, Codeling addresses the challenge of the consistency between
architectural knowledge and the program code. Besides other information, this
architectural knowledge includes architectural structure, design decisions, and
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architectural patterns. The approach also addresses the challenge to integrate
the documentation of decision knowledge into software engineering practices,
especially into coding and modelling. The main advantage is that design decision
models are documented at the code level, so that the decisions are available to
developers and are included in the VCS.

6.5 Continuous Management of Decision Knowledge

The approach presented in this section integrates the documentation and exploitation
of design decisions into the work of the developers, in particular the usage of VCS
and ITS. We refer to it as Continuous Management of Design Decisions (ConDec).

We address both challenges in this section. In Sect. 6.5.1, we detail the relevant
knowledge elements of the DDM introduced in Sect.6.2. Section 6.5.2 presents
the main ideas on how to use short-cycled CSE practices to trigger developers so
they would document and exploit decision knowledge. Section 6.5.3 describes the
application to the case study.

6.5.1 Integrating Design Decisions into CSE

The knowledge meta model is shown in Fig.6.11. Software artefacts contain
knowledge that we classify into system and project knowledge [PDH14]. System
knowledge concerns the software itself (e.g. code, requirements, design, test cases),
whereas the knowledge about its development and evolution is summarised under
the term project knowledge. Decision knowledge can relate to both knowledge types.

In CSE, features are more prominent than components [Bos14]. Thus, we focus
on features and code as essential system knowledge elements in CSE. Features
represent both functional and non-functional requirements. Features can be split into

refers to

linked to linked to Legend:

refers to
System Knowledge

L |

attached to

Project Knowledge

Decision Knowledge

’attached to attached to ’attached to

| Decision
contains
- contains
DecisionComponent
l Problem l l Solution l l Context l l Rationale l

Fig. 6.11 Relationship between features, tasks to implement the feature (feature task), code,
commits, and decision knowledge
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sub-features or grouped into bigger features. We refer to the tasks that developers
fulfil to implement a feature as feature tasks. Short-lived branches can be used to
encapsulate the actual development work [Kru+14]. We refer to these branches as
feature task branches. A feature task branch comprises one or more commits that
refer to code. When a feature task branch is merged into another branch, a merge
commit is created. The difference between merge commits and normal commits is
that the merge commit has two parent commits [CS14]. Feature tasks, feature task
branches, and commits are types of project knowledge. We use the DDM explained
in Sect. 6.2 to represent the decision knowledge.

We assume that tracing between features, feature tasks, commits, and code,
as well as decision knowledge, is possible (cf. the relationships in Fig.6.11).
Tracing can be accomplished either using (a) textual annotations such as decision
annotations [Hes+15] or task identifiers in the commit messages, (b) distinctly
documented trace links (e.g. within a table), and (c) trace retrieval techniques
[Cle+13]. A tracing possibility is the prerequisite for developers to consider
and ensure the consistency of decision knowledge and artefacts. Tracing enables
developers to simultaneously reflect decision knowledge and artefacts. Developers
can explore code and decision knowledge that evolved during the implementation
of a feature. Likewise, developers can see decision knowledge and features relevant
to a certain piece of code.

Evidently, there are other CSE artefacts that can contain relevant knowledge, for
example user feedback, pull requests, or chat messages. We consider the artefacts in
Fig. 6.11 as the minimal set of CSE knowledge artefacts.

In the following, the implementation of this meta model is introduced: Feature
tasks are often called tickets and managed in an ITS [Sai+17]. We store both feature
tasks and features in the ITS, whereas code and commits are stored in a VCS.
In the ITS, developers can create distinct decision knowledge elements linked to
the respective features and feature tasks. In the VCS, developers textually capture
decision knowledge in commit messages and code. We encourage developers to
mark it as such knowledge using decision annotations (cf. Sect. 6.5.3, Listing 6.1),
as suggested by Hesse et al. [Hes+15]. The identifier of the feature task is added to
the commit message. This satisfies the finding by Codoban et al. [Cod+15] that a
good commit message expresses the rationale of the change and provides a link to
requirements. Therefore, we use decision annotations, feature task identifiers in the
commit messages, and distinctly documented trace links to establish tracing.

A first tool to capture these kinds of decision structures is the tool DecDoc, which
is based on the DDM and allows to document design decisions collaboratively and
incrementally [HKR16]. DecDoc supports the capturing of distinct decision knowl-
edge elements, as well as implementation decisions, as annotations in the code. The
DDM and DecDoc were evaluated by a retrospective analysis of decision-making
processes of professional software designers [HP16]. The evaluation showed that it
is feasible to document complex decision knowledge in DecDoc from collaborative
and incremental decision-making processes [HKR16]. In order to be less intrusive,
we now develop the ConDec tool support, which directly integrates into the ITS
(JIRA) and VCS (Git) [Kle+18b]. ConDec comprises the features of DecDoc and
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more features, such as the capture of decision knowledge when committing code as
part of the commit message.

6.5.2 Decision Knowledge Triggers

CSE involves implementing and delivering many small increments. Practices
advancing these increments are ideal to integrate decision knowledge triggers, that is
techniques that trigger developers to capture and use decision knowledge. They are
ideal because they are regularly performed by developers. Furthermore, they com-
prise practices that indicate that developers either start or finish work (Table 6.5).
Practices that indicates start are to open a feature task and to create a feature
task branch. Practices that indicate finish are to commit code, merge a feature task
branch, or close a feature task. Before performing a finish practice, developers might
have made important decisions. Thus, when developers perform a finish practice,
we want to trigger them to explicitly capture decision knowledge. When developers
perform a start practice, we want to trigger them to use existing decision knowledge
to make sure they consider consistency between old and new decisions.

Figure 6.12 shows a state diagram of decision knowledge in CSE. The labels
of the transitions indicate the type of CSE practice (start or finish) that developers
perform. The start transitions always involve that developers make decisions. In

Tgble 6.5 CSE practices to Tool ~CSE practice Type
gé%ﬁirl ;iva?rll(()ip:i;ltooit ITS  Start feature task start
decision knowledge Close feature task Sfinish
VCS Create feature task branch start
Commit code finish
Merge branches finish

@ decision knowledge @

start is tacit start /consider
and inconsistent censistency
with artefacts — @
finish/make
explicit
~

decision knowledge

decision knowledge )
' Lls explicit and consistent

is explicit, distributed

and inconsistent finish/package
with artefacts ®

Fig. 6.12 State diagram of decision knowledge and artefacts. The state on the lower right side is
the preferred state

with artefacts
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addition, the tasks on the right side of the labels (make explicit, package, and
consider consistency) need to be performed by developers for certain transitions.
The ConDec approach supports these tasks: The integration of tool support into
short-cycled start and finish practices triggers developers to explicitly capture
decision knowledge consistent with artefacts and exploit it afterwards.

At the beginning of the work, decision knowledge is often tacit in the head of a
few developers (Fig. 6.12-). If decisions are not tacit, they are often discussed
informally and captured partly and in a distributed manner, such as in issue
comments [Hes+16], commit messages, pull requests [Bru+14], wikis, emails, chat
messages [Alk+17a], or Internet relay chat channels [Alk+18]. We refer to this
decision knowledge as distributed knowledge. This knowledge is hard to access later
and might even be outdated. Therefore, we consider tacit and distributed knowledge
as inconsistent with artefacts (cf. Fig. 6.12, left). Decision knowledge and artefacts
become inconsistent as soon as they are created or changed. Transitions between
consistent and inconsistent states are frequently recurring during CSE, while some
artefacts are in a consistent and others in an inconsistent state at the same time. We
describe the techniques behind the decision knowledge triggers in the following.

Making Tacit Decisions Explicit

Many decisions remain tacit, that is they are not captured anywhere but are already
incorporated in the software. We present developers with abstractive summaries of
changes to software artefacts when they perform a finish practice (Fig.6.12-Q)).
By presenting abstractive summaries, we want to trigger developers to make tacit
decisions explicit, that is to reconstruct decision knowledge. This approach builds
on the summarisation of source code changes, as suggested by Cortés-Coy et al.
[Cor+14]. Tool support extracts change sets by comparing the code before and after
the change. These change sets are the basis for generating an abstractive summary.

Packaging Distributed Decision Knowledge

Developers are presented with relevant distributed decision knowledge when they
finish an implementation, as indicated through a finish practice (Fig.6.12-Q)).
They can check whether the decision knowledge really reflects the changes made.
Thereby, we want to trigger them to package the most important decisions and to
link them to the corresponding feature, feature task, or commits.

We present relevant distributed decision knowledge as extractive summaries
using two techniques: (1) Developers can explicitly mark decision knowledge using
decision annotations, as presented by Hesse et al. for code [Hes+15] and Alkadhi
et al. for chat messages [Alk+17b]. Similarly, they are enabled to apply such
decision annotations in other CSE artefacts, for example in comments to feature
tasks, pull requests, or wiki pages. (2) We mine the unstructured distributed decision
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knowledge by machine learning techniques similar to Rastkar and Murphy [RM13],
Rogers et al. [Rog+14], Bhat et al. [Bha+17], and Alkadhi et al. [Alk+17a, Alk+18].
All of these techniques require a gold standard to train a supervised classifier. It
needs to be investigated to which extent such gold standards can be generalised to
identify decision knowledge from different types of CSE artefacts.

Criteria for relevance for inclusion in extractive summaries could be a direct
reference (e.g. decisions captured in the code to be committed) or an indirect
reference (e.g. decisions mentioned in a recent chat message or feature task
comment by the developer).

Considering Consistency Between Decisions

To ensure consistency between decisions, we focus on practices that indicate that
a decision is to be taken (Fig. 6.12-@). One example is when a developer sets the
status of a feature task from open to in progress.

By presenting relevant decision and system knowledge, we want to trigger the
developers to take previous decisions into account when working on the new feature
task. This supports developers during the implementation of features. Criteria
of relevance are derived from the trace links in Fig.6.11. For example, relevant
decision knowledge and code are those from other feature tasks that are related to
the same feature.

6.5.3 Application to the Case Study

In the following, we use the CoCoME evolution scenario described in Sect. 6.3.3. In
this scenario, the CoCoME sales system is extended with new payment possibilities.
That is, one feature should enable the CoCoME customer to pay via Bitcoins and
another feature to pay via PayPal. First, the requirement engineer (product owner)
creates a feature task to implement the Bitcoin payment feature. The feature task
is assigned to developers, who set the status from open to in progress and create a
feature task branch to work on this feature task. Thus, they perform a start practice,
as indicated in Fig. 6.12-Q). The developers collaboratively discuss the design. One
developer suggests extending the IBank interface with new payment methods,
while another developer states that there are bank regulations that forbid to easily
change that interface. The developers decide that a new IPayment interface could
be added. Thus, the developers create the ITPayment interface that contains the
authenticate and pay methods.
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BitcoinPayment Feature

public interface IPayment {

Bitcoin Feature Task public authenticate();
public pay();
attached to }
Goal -
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new payment possibilities? )
new payment methods of that interface

Fig. 6.13 Decision for adding the IPayment interface and related knowledge

Scenario for the Explicit Documentation of Decision Knowledge

The developers explicitly document decision knowledge consistent with artefacts.
One possibility to document decision knowledge is that the developers write it
in the code using decision annotations (Listing 6.1). Similarly, the developers
can document the decision knowledge in the commit message or in the ITS.
Consequently, the decision knowledge is consistent with the feature, feature task,
and code, as depicted in Fig.6.13. The knowledge can be accessed from each
of these artefacts. For this purpose, it does not make any difference whether the
developers document the decision knowledge in the VCS or ITS.

Scenario for Making Tacit Decisions Explicit

Imagine the developers did not document the decision Add a generic IPayment
interface in the decision annotations (Listing 6.1). However, the decision knowledge
resides tacitly in the head of the developers. When the developers commit the
code changes, they perform a finish practice (Fig. 6.12-Q)). Since the code change

Listing 6.1 Example for using decision annotations during implementation

I /+ @Decision Add a generic IPayment interface
> * @Issue How can we Iintegrate new payment possibilities?
* @Goal Find a solution that allows to add new payment

possibilities in the future

4+ * @Alternative Extend the IBank interface with new payment
methods

s + @Constraint Bank regulations forbid the change of that
interface =/

¢ public interface IPayment {

public authenticate () ;
8 public pay () ;
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LIE]X]

List of changes: It seems that you made the following change, please refine it:
- Add IPayment " de IPayment interface j
interface What problem did this solve?

| How can we integrate new payment possibilities? [

What is the alternative?

LExtend the IBank interface with new payment methods J

N [Add decision component | v | | Add this decision! [

Fig. 6.14 A summary of changes illustrated as a sketch. The italic text is manually added by the
developers

contains the addition of a new interface, the summary Add IPayment interface is
suggested to them (Fig.6.14). The developers approve that the summary of the
change belongs to an important decision and reconstruct additional information
on the decision problem (issue) and its alternatives. In particular, this supports
developers to reflect about naturalistic decisions.

Scenario for Packaging Distributed Decision Knowledge

Imagine the developers did not document the decision knowledge as depicted in
Listing 6.1 but discussed it in a written form, for example in the comments to the
feature task, chat messages, Internet relay chats, or pull request for the feature task
branch. Developers perform a finish practice when they close the respective feature
task (Fig. 6.12-3)). Tool support extracts relevant distributed decision knowledge
from the original source (i.e. comments to the feature task, chat messages, Internet
relay chats, or pull request). For example, the distributed decision knowledge is
expected to be relevant when it was recently mentioned by the same developers.
Further, the decision knowledge is classified by a machine learning approach and
presented to developers, as shown Fig.6.13. Since the developers discussed the
addition of an IPayment interface, the decision Add a generic IPayment interface is
suggested to them. Developers acknowledge that Add a generic IPayment interface
is a decision they made and that the related decision knowledge is correct. The
decision knowledge is stored inside of the ITS and gets linked to the feature
task (Fig.6.13).

Scenario for Considering Consistency Between Decisions

Imagine that the implementation of the Bitcoin payment feature task was finished
and the decision knowledge is documented, as shown in Fig.6.13. The feature
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Fig. 6.15 Important decision knowledge related to the implementation of the payment feature

task to implement the PayPal payment feature is assigned to other developers.
Figure 6.15 shows how decision knowledge is visualised in the context of related
artefacts. When the developers set the status of the new feature task to implement
the PayPal payment feature from open to in progress, they perform a start practice
(Fig. 6.12-@). Since this feature is linked to the Bitcoin payment feature (Fig. 6.15),
the code of the IPayment interface, as well as the decision knowledge Add a
generic IPayment interface, is presented to the developers. Thus, they will learn
about the integration of new payment possibilities and make decisions consistent
with this previous one. The decision knowledge for the usage of the adapter pattern
(cf. Sect. 6.3.3) can also be accessed.

6.6 Related Work

In this section, we discuss related work regarding the challenges of ensuring the
consistency and minimising the intrusiveness of the design decision documentation.

6.6.1 Documentation Consistent with External Decision
Knowledge

The following section summarises related work for the AM3D approach by Durdik
[Durl14]. One of the most related approaches to the AM3D approach is Software
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Engineering Using Rationale (SEURAT) by [BBO08] including its extension pre-
sented by Wang and Burge [WB10]. It supports architects and developers by finding
a pattern for a given problem. The design rationales and the design decisions during
the decision-making are stored. Furthermore, SEURAT includes questions that have
to be answered during the decision-making process in order to find the correct
pattern. The purpose of these questions, however, is different from that of the AM3D
approach. In SEURAT, the questions are used to find information, which is required
before the decision can be made. They also specify which source of information is
used to answer them.

Zimmermann et al. [Zim+08, Zim11] introduce a decision framework. The
approach is based on reusable architectural decision models. The goal of the
approach is to support developers and architects during the decision-making
process, in particular during the phases decision identification, decision-making,
and decision enforcement. The main focus of the approach by Zimmermann et al.,
however, is on the reuse of decisions and decision-related information itself, while
AM3D focuses on the reuse of solutions.

The AM3D approach is not an expert system approach (see Table 3.1 in Durdik
[Dur14]). The main difference between an expert system and the AM3D approach is
that AM3D goes beyond a typical expert system as it helps users not only by finding
a suitable solution but also by evaluating the solution, comparing it with other
solutions, and documenting the found solution together with its decision rationales.
However, Durdik [Dur14] pointed out that some expert system approaches, such as
Garbe et al. [Gar+00], are also related to the AM3D approach as they use questions
in order to choose a software pattern for a given problem.

6.6.2 Documentation of Decision Knowledge Consistent
with Architecture and Code

There is also related work regarding the relationship between models and code.
The field of model/code co-evolution describes how models and code can evolve
together. Work in this area usually focuses on one specific type of model. For
example, Langhammer [Lanl7] describes an approach for the co-evolution of
Palladio architecture models and Java program code. Langhammer describes rules
that preserve a consistent relationship between the architecture model and the
program code during changes on either side. The Codeling approach, presented in
Sect. 6.4, instead allows for co-evolution between arbitrary object-oriented program
code and model languages, as long as the latter can be represented with a specific
subset of the Ecore meta model [Kon18].

Approaches for the co-evolution of models and code often do not consider the
evolution of the underlying languages. Rocco et al. [Roc+14] explicitly describe
language evolution as an aspect of model/code co-evolution. When a system is
modelled using meta models and a corresponding code is generated, the evolution of
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the meta model is a challenge. Such changes can break the code generators. This is a
case of model/code co-evolution: The meta model can be regarded as model, and the
code generator can be regarded as code in the context of model/code co-evolution.
The authors propose a co-evolution approach where model changes are propagated
via well-defined transformations, which operate on the code and take the model
difference as input. This approach can be used to handle architecture language
evolution regarding model editors but not regarding the code that implements a
system’s architecture.

The synchronisation between models and between models and code is the
focus of the research in (in)consistency management [Fel+15]. These approaches
assume that two views upon a shared body of information overlap. When one
view is changed in the overlapping part, these changes should be propagated to
the other view. Consistency management deals with methods and tools to re-
establish synchronisation. Existing consistency management approaches focus on
coarse-grained program code structures, such as code files or classes and relate
them to model elements. Konersmann [Konl8] argues that a more fine-grained
abstraction level is necessary and implements such consistency relationships in
Codeling. Vitruv [KBL13] is a more general approach to keep different views
consistent. It bases on coupling EMOF-specified meta models. For the coupling of
the Palladio meta model for architectural specification with Java, see the PhD thesis
of Langhammer [Lan17].

In 1995, Murphy et al. [MNS95] presented an approach to bridge the gap between
program code elements and higher-level software models. In their approach, a map-
ping is created between higher-level model elements and program code elements.
The approach of Murphy et al. is limited to mappings between model elements and
program code files, neglecting the structures within the code files. Approaches need
to address structures within the code files to add decision knowledge to specific
architecture elements in the code.

6.6.3 Non-intrusive Documentation of Decision Knowledge

A documentation technique is lightweight if developers require only little effort
to document knowledge. In addition, a non-intrusive documentation technique
enables developers to document knowledge in a lightweight way as part of their
development practices. In the following, we discuss both lightweight and non-
intrusive techniques.

There are several models to represent decision knowledge, for example Question,
Options, Criteria by MacLean et al. [Mac+96] and the Decision Representation
Language by Lee [Lee91]. In this chapter, we use the DDM to represent decision
knowledge (cf. Sect. 6.2). The main difference in comparison to former models is
that developers can explicitly model context knowledge in a fine-grained way and
that all components of a decision can be nested and refined. The collaborative and
incremental nature of the DDM allows for a flexible documentation of decision



136 A. Kleebaum et al.

knowledge in contrast to filling out static text templates. The DDM is suitable to
represent decision knowledge from informal and thus lightweight decision-making
processes [HP16, Hes+16].

Hesse et al. [HKR16] investigate whether other approaches (implemented in
tools) allow to document decision knowledge in a collaborative and incremental
way. They identified that Archie [Cle+13] and SEURAT [BBO08] are most similar
to the tool DecDoc. The main differences are that SEURAT does not support
naturalistic decision-making and Archie does not support shared documenta-
tion. Alexeeva et al. provide a literature overview of 56 decision documentation
approaches [APM16]. They identified that the approaches are concerned with
the following goals: documentation, consistency, evolution, extraction, impact
analysis, reuse, sharing, traceability, and visualisation. Twelve of the approaches
have the goal of enabling architecture consistency or compliance checks and thus
address the consistency challenge of this chapter. However, the usage of these
existing approaches requires developers to perform additional steps. Instead, the
ConDec approach (Sect. 6.5) is integrated into developers’ daily practices, such as
committing code. In this regard, the ConDec approach is less intrusive.

A lightweight approach to document decision knowledge are decision annota-
tions. Decision annotations enable developers to classify information as decision
knowledge. Hesse et al. [Hes+15] use decision annotations to capture decision
knowledge in code. Alkadhi et al. present an approach to capture decision knowl-
edge in chat messages using such annotations [Alk+17b]. The ConDec approach
also uses decision annotations in commit messages and issue comments. The
importance of rationale in commit messages is confirmed by Codoban et al.
[Cod+15]. They criticise that commit messages as often being non-informative. Our
approach combines annotations to important artefacts like code or commit messages
with explicit decision models, as the former eases the capture and the latter eases
the understanding of decisions.

Perhaps the most lightweight approach to capture decision knowledge is using
informal, non-structured natural language. Recently, various approaches emerged
that try to automatically identify and extract decision knowledge captured in non-
structured natural language. For this purpose, they use machine learning techniques.
Alkadhi et al. show how to automatically identify decision knowledge in chat
messages [Alk+17a] and Internet relay chat channels [Alk+18]. Rogers et al. mine
decision knowledge from bug reports [Rog+14], whereas Bhat et al. focus on issue
comments in general [Bha+17]. The ConDec approach allows for the informal
documentation of decision knowledge and integrates mining techniques into the
daily work of the developers instead of applying them retrospectively. As part of
their future work, Rogers et al. [Rog+14] and Bhat et al. [Bha+17] state that they
are planning to integrate mining features into existing knowledge management tools.
The ConDec approach picks up this idea, as described in previous sections.

Saito et al. [Sai+17] and Rastkar and Murphy [RM13] also exploit knowledge
documented in artefacts of the ITS and VCS . Similar to them, the ConDec approach
also uses commits to link code in the VCS to tasks in the ITS. The meta model
in Fig. 6.11 makes these relationships explicit and shows how decision knowledge
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refers to these artefacts. Saito et al. [Sai+17] developed an approach to retrospec-
tively link commits to tasks. After applying their approach, they found that still 20%
of the tasks were not documented in the ITS as issues but directly communicated
to developers. The ConDec approach does not address such undocumented tasks
but supports developers to make tacit decision knowledge explicit. In the approach
by Rastkar and Murphy [RM13], extractive summaries of issues that relate to a
certain piece of code are presented to the developers. The summaries are supposed to
provide developers with the rationale for code changes. Unlike Rastkar and Murphy,
the ConDec approach creates summaries during finish practices in order to trigger
developers to document important decision knowledge.

6.7 Conclusion

This chapter presented three approaches regarding the elicitation, documentation,
and exploitation of design decisions in the context of CSE and long-living, evolving
software systems. These approaches focused more on either the challenges of
intrusiveness or consistency.

The AM3D approach supports architects and developers in making rational
design decisions consistent with external decision knowledge, which is presented in
a separate tool. In addition, the Codeling and ConDec approaches focus on ensuring
consistency among decisions within a project, architecture, and code. While the
AM3D approach leaves open where to document the knowledge, the Codeling
and the ConDec approaches use annotations. In the ConDec approach, lightweight
traceability is established, whereas the Codeling approach uses transformations
(formal mappings) between architecture and code. These transformations are
more powerful than traceability links since transformations can be used to create
decision models that are interrelated with architecture models and the corresponding
code. Hence, changes in the models can be propagated to the code. However,
transformations are more intrusive than traceability links because they require extra
notations. In addition to using annotations, the ConDec approach also captures
decision knowledge in commit messages and in the ITS. Further, the ConDec
approach uses short-cycled CSE practices to support developers in documenting and
exploiting decision knowledge. The presentation of decision knowledge supports
developers in making consistent design decisions and design decisions consistent
with the software artefacts. In particular, ConDec also needs to find a balance
between (a) the extent to which it can support developers in documenting decision
knowledge consistent with former decisions and artefacts and (b) the intrusiveness
of the presentation of knowledge. Thus, there is a trade-off between lightweight
capturing or having powerful consistency checks that need to be considered when
setting up a software development project.

The presented approaches are a first step towards extending CSE with a
continuous management of decision knowledge. The following enhancements are
desirable. Durdik [Dur14] pointed out future work for the AM3D approach. For
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instance, the AM3D approach can be extended to support behavioural models;
that is, behavioural information contained in design patterns can be supported.
Currently, the AM3D approach only supports component-like models. In Codeling,
the information about pattern instantiations is integrated with program code. This
integration only contains the decision and the name of the instantiated pattern.
In the future, the implementation should be generated accordingly to actually
implement the pattern, where possible. The ConDec approach is implemented in
tools [Kle+18b]. We will evaluate the tool support during CSE projects that are
part of a practical course at university. We will assess to which extent decision
knowledge triggers support developers during CSE. In particular, we will investigate
which knowledge is worth capturing. Furthermore, we will clarify how to maintain
the knowledge in order to keep it useful and how to access the relevant parts of
knowledge.

6.8 Further Reading

Using a Design Pattern Catalogue to Make Design Decisions The main idea
and details about the AM3D approach are presented in the dissertation of Dur-
dik [Dur14]. Durdik and Reussner [DR13] explain the rationale for using design
patterns and pattern documentation. The ADVERT approach, which uses AM3D
for design decision-making, is explained in [Kon+13].

Integrating Design Decision Models with Program Code The integration of
architecture models with code is subject to the work by Konersmann [Kon18]. It
is based on the idea of embedded models by Balz [Ball1]. The tools for creating
and executing translations between architecture-related program code and models
are available on https://codeling.de. Konersmann et al. describe variants of this
approach, for example for integrating deployment model information [KH16] or
behaviour models [KG15] with program code, and the use of integrated model
information for locating and understanding errors [Kon14].

Continuous Management of Decision Knowledge The integration of project and
system knowledge, in particular the joint management of decisions and work items,
is thoroughly discussed by Paech et al. [PDH14]. The DDM was first introduced
in [HP13]. Hesse et al. performed several studies that demonstrated the feasibility
of the DDM to represent complex decision knowledge. In [Hes+14], they use the
DDM to document decisions that address security requirements. In [HP16], they
investigated the decision-making process during design sessions. In [Hes+16], they
empirically investigated informal decision knowledge from the ITS of the Firefox
open-source project. They found that the documented knowledge mostly concerned
the decision context and that naturalistic decision-making is dominant over rational
decision-making for both bug reports and feature requests. Hesse et al. describe their
implementation of the DDM in [HKR16, Hes+15].
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The ConDec approach is described by Kleebaum et al. [Kle+18a, Kle+18b].
Johanssen et al. in particular address the visualisation of decision knowledge in
relation to usage knowledge [Joh+17b]. Tool support for the documentation and
exploitation of decision knowledge in the ITS and VCS is available on https://github.
com/cures-hub.
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