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ABSTRACT
Many software systems are stateful or have stateful compo-
nents, i.e. they manage and process data depending on cer-
tain steps performed before. For this reason, sequential con-
tracts are of interest that describe component interfaces with
respect to sequences of invocations leaving the component
in a valid state. While sophisticated models for this pur-
pose exist, component frameworks don’t support sequential
contracts, so that a validation of the state is performed algo-
rithmically and mixed-up with application logic in method
contents. In this contribution we present (1) meta data for
object-oriented program code that allow to annotate compo-
nent interfaces with sequential contracts and (2) a pattern
and tools integrating sequential contracts in Java Enterprise
components. The contracts can then be modeled as part of
the program code at development time and be interpreted at
run time to prevent invalid method invocations and provide
tracing data in case of errors.

1. MOTIVATION
Complex software systems usually have components that are
stateful – i.e., they have different states and act based on
their current state. The states can be specified formally or
informally and are often related to data that is managed
by the component. Such stateful components do not exist
standalone, but are part of larger systems and by this means
coupled to other components. The coupling is realized with
method invocations between components. Consequently, in
stateful components, method invocations may be valid or
invalid depending on the component’s state. When this is
specified formally, the component interfaces define valid se-

quences of method invocations which are called sequential

contracts. As a simplified example consider a shop system
with a shopping cart component that requires a login, then
adding of products, and finally a checkout. This simple ex-
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Figure 1: A simple example for a sequential con-
tract: This shopping cart requries a login, then
adding of products, and finally a checkout.

ample is shown informally in figure 1.

An exemplary environment for such components is that of
enterprise applications, e.g. with the Java Enterprise Edi-
tion (JEE) [1]. Application logic components are part of
larger systems consisting of different layers for user inter-
faces, remote communication, database access, etc. Such
systems can also be subject to changes, adaptations, and re-
configurations of components, so that a robust description of
component interfaces is desirable. The principle is shown in
figure 2: Components with application logic, in this case the
ShoppingCartBean, are coupled to other components with
different purposes and depend on the actions taken by end
users. While an interface exists that describes the applica-
tion logic components, in this example IShoppingCart, se-
quential contracts cannot be modeled in current component
frameworks.

For this reason, application logic and validation of the cur-
rent state are usually mixed-up in method bodies, thus re-
ducing the understandability and maintainability of such
program code. For example, we can imagine that the method
add of the shopping cart always validates if its class attribute
user is not null since it expects the login method to set the
user; by this means, the current state is inferred from the
data. Although techniques exist for formal verification and
compatibility checks of sequential contracts, the specifica-
tions are only informal when they are hidden in the im-
plementation. In addition, observation and monitoring of
method invocations and possible contract violations is han-
dled locally in method bodies so that possible errors are
not necessarily detected and tracked at run time. Consid-
ering these problems, we propose an approach to integrate
sequential contracts in existing component frameworks, in
this case the Java Enterprise Editions. The approach has
the following goals:

1. Sequential contracts shall be specified in a formal way
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Figure 2: Components in the Java Enterprise Edi-
tion: The ShoppingCartBean contains stateful applica-
tion logic and is described with the interface IShop-

pingCart, which is in turn accessed by other compo-
nents, e.g. from the web layer.

for component interfaces of the JEE framework.

2. The specifications shall be usable at development time
for model checking.

3. The specifications shall be usable at run time for vali-
dation of actual method invocations and error tracking
by a common framework.

Thus, we must find a way to integrate Java interfaces and
sequential contract definitions. The resulting notation must
not only be readable at development time, but also at run
time. A technique must be developed that integrates valida-
tion and error tracking in the JEE framework. This paper
will thus describe the following contributions:

1. We specify semantics for existing formal sequential
contract models, interface automata [2], that are ap-
propriate for describing Java interfaces.

2. We specify a notation for sequential contracts based
on Java Annotations [3], i.e. type-safe compiled meta
data that can be attached to Java interfaces and their
methods.

3. We introduce a framework on top of the JEE that val-
idates the contracts at run time, tracks errors, and
allows for monitoring.

The paper is for this purpose organized as follows: In section
2 we consider existing approaches. In section 3 we describe
interface automata and apply them to Java interfaces in sec-
tion 4. The usage of the model at development time and run
time is explained in section 5. Finally, we discuss the ap-
proach in section 6 and conclude in section 7.

2. RELATED WORK
The extension of interfaces with additional information is
subject to many publications. However, most focus on im-
plementing pre- and postconditions for method calls. It is
possible to emulate call sequence contracts using behavioural
descriptions with internal state fields that are checked in
preconditions and set in postconditions of method invoca-
tions. This approach is discussed in [4] and argued to be
error prone and hard to understand, because the sequen-
tial contract is just indirectly modeled in hat paper. Cheon
and Perumandla present an extension to the Java Modeling
Language (JML) [5] to describe call sequences in a regular
expressions–like notation. Their notation is embedded into
program code comments. The compilation process includes
a transformation of the sequence definition to a structure
of methods checking pre- and postconditions. The explicit
sequence definition is thus only available at compile time,
which contradicts our goal 3.

Heinlein [6] describes concurrency and sequence constraints
for Java classes using interaction expressions. The con-
straints are checked at run time, postponing prohibited me-
thod calls. However, the Java language is extended in this
approach to integrate the checks for the constraints. Thus
this approach is not applicable for all JEE-based systems.

Pavel et al. [7] introduce a framework which allows to check
and reject method calls to Enterprise Java Beans (EJB) [8]
components, based on Symbolic Transition Systems. In their
approach, the state checks have to be implemented manu-
ally or via a precompiler directly into the business methods.
In contrast to our approach, the validation code is mixed-
up with the business aspects in the code. Thus no explicit
model is available at run time.

As another view, some architecture description languages
(ADL) provide sequential or protocol information for com-
ponent interfaces. As some of these languages have map-
pings to the Java programming language, an automatic map-
ping of sequential constraints to the interfaces expressed in
the ADL could represent an extension of Java interfaces with
a sequential contract. E.g., Reussner et al. [9] provide so-
called Service Effect Specifications (SEFF) in their Palladio
Component Model. However, they do not specify SEFFs
any further. SEFF can e.g. be defined as Finite State Ma-
chine or any other language. No suggestion is given for an
implementation of the SEFFs.

3. INTERFACE AUTOMATA
Beugnard et al. [10] define four levels of interface descrip-
tions: (1) syntactic level, i.e. method signatures; (2) be-

havioural level, i.e. pre- and postconditions for method in-
vocations; (3) synchronization level, which includes call syn-
chronization and sequences; and (4) quality of service level,
including performance and security information. Interface
definition languages like IDL [11] or the interface syntax
of current programming languages usually allow for defining
first level interfaces. For defining second level interfaces, lan-
guage extensions like JML can be used. Sequential contracts
are defined in third level interfaces. However, this level of
interfaces is not represented in current programming lan-
guages. Our objective is to use a model for synchronization
level interfaces to define permitted call sequences for Java



interfaces. We use interface automata [2] to model these
contracts.

Interface automata are essentially finite state machines with
in- and output actions, where each input defines a received
method call and each output defines an outgoing method
call. This mechanism can be used to describe how a com-
ponent that implements an interface can be called by its
context and how it makes calls to external components.

As stated by de Alfaro and Henzinger [2], an interface au-
tomaton P is a six-tuple P = 〈VP , V

init

P , AI

P , A
O

P , A
H

P , TP 〉.

• VP is a set of states.

• V init

P ⊆ VP is a set of initial states, with at most one
state. P is called empty if V init

P = ∅.

• AI

P , A
O

P and AH

P are disjoint sets of input, output and
internal (hidden) actions. AP = AI

P ∩AO

P ∩AH

P is the
set of all actions.

• TP ⊆ VP × AP × VP is a set of steps, which move the
automaton from one state to another when the action
is performed.

The formal foundation of interface automata allows for veri-
fication of e.g. the compatibility of interface automata. The
compatibility of interface automata should be verified when
a component is to be replaced by another implementation
in a component assembly, where a set of components is in-
terconnected to an application. This ensures that the new
sequential contract is compatible with the prior one. Al-
gorithms for computing the compatibility of interface au-
tomata are given in [2]. In addition, interface automata
can be statically checked for a set of properties, including
deadlock-freedom.

As an example, figure 3 shows the graphical representation of
an interface automaton Shopping Cart, which is a refinement
of the contract shown in figure 1. This interface automa-
ton defines three input actions login(...), add(Product),
and checkout(), as well as two output actions success and
LoginFailedException. The automaton consists of three
states start, start’, and ready, of which start is the ini-
tial state. When the input action login(...) is triggered,
the automaton moves to the state start’, which will result
in one of the output actions. If the login was successful,
products can be added or a checkout can be processed.

4. INTERFACE AUTOMATA IN JAVA
A notation for describing the interface automaton for a spe-
cific interface is needed for using interface automata in Java.
In this section we explain our notation for automata using
meta data on interfaces.

For attaching interface automata to Java interfaces, we use
a notation that is integrated with the interface definition. In
this notation interface automata are defined by information
included in the Java interface description, and additional
data attached to the interface. This additional data is added
using Java’s own concept for meta data in source code, called
annotations [3]. The interface class and its methods are

readystart

login(...)?

add(Product)?

LoginException!

success!

start’

checkout()?

login(...)? checkout()?

add(Product)? success!

LoginException!

Figure 3: A simple interface automaton

extended with special annotations defining automaton ele-
ments that cannot be found in the interface definition oth-
erwise. Thus the notation is integrated with the interface
description. This integration technique avoids redundantly
defined information. Listing 1 shows an example of the no-
tation. The automaton described in this listing is the same
as shown in figure 3.

For using Java interface definitions within the notation, el-
ements of the interface description are mapped to elements
of the interface automaton definition: The methods declared
in the interface are defined to be the set of input actions AI

P

of the automaton. If a method throws any exception, the
successful return of a method and each explicitly thrown
exception are defined as output actions in AO

P . This infor-
mation is available directly from the interface description.
In addition, the interface automaton needs the set of states
VP , the initial state V init

P , and the set of steps TP .

The annotation @InterfaceAutomaton declares an interface
to be enriched with an interface automaton. The initial state
V init

P is as an attribute of this annotation. The steps of
the automaton are defined by the annotations @IAStep on
the interface methods. This annotation type includes the
name of the automaton state that enables the method as
input action, the state of the automaton if the method call
was successful, and optionally the state to get into for each
possibly thrown exception. Thus an @IAStep annotation can
declare more than one step. The set of states VP is implicitly
defined within the in- and output parameters of @IAStep

annotations. Each state named in any of these annotations
is a state in VP . The set of internal actions AH

P is not used
in this model.

In order to represent such descriptions of Java interfaces,
the interface automaton design has to follow a special pat-
tern: (1) A method without exceptions is a step between
two states with an input action, which is the method call.
(2) In addition to that, a method with n declared exceptions
describes n + 1 output actions: the successful method exe-
cution (named success by convention of this pattern) and
each declared exception. An additional state is defined for
handling these output actions. The pattern is shown in fig-
ure 4. In this example, a connection from state A to state B

exists if the method call x is successful. The additional state
A’ as introduced by the pattern handles possible exceptions.



@InterfaceAutomaton(initialState = "start")

public interface IShoppingCart {

@IAStep(from = "start", to = "ready", exceptions = {

@IAException(at = LoginFailedException.class, to = "start")

})

public boolean login(String user, String password) throws LoginFailedException;

@IAStep(from = "ready", to = "ready")

public String add(Product p);

@IAStep(from = "ready", to = "start")

public void checkout();

}

Listing 1: An interface automaton definition for a Java interface

The output actions (success, Exception1 . . . ExceptionN)
are not related to method calls, but only to the outcome of
state A’.

BA x()?

A’A x()? B

success!

Exception1!

ExceptionN!

...

(1)

(2)

Figure 4: Patterns for modeling interface automata

5. MODEL USAGE IN JAVA ENTERPRISE
APPLICATIONS

The interface automaton definition integrated with Java in-
terface descriptions allows for using the automaton in com-
ponent systems. As shown in figure 2, in the Java En-
terprise Edition, Java interfaces describe the functionality
of the application logic components, called Enterprise Java
Beans (EJBs). Thus the automata definitions can be used
for describing permitted call sequences to EJBs. Due to the
integrated description of interface automata, the automata
definitions are available for usage not only at development
time, but also at the run time of the system, by using reflec-
tion mechanisms [12] for Java annotations. In the following,
the possible usage of the models is explained.

5.1 Development Time
The formal notation of interface automata allows for stati-
cally checking the models for deadlocks and other properties.
In addition to static checks, the behaviour of interface au-
tomata can be simulated prior to the system deployment to
ensure the correct behaviour or to gain an understanding
of the sequential contract. As the notation can be trans-
formed in any other notation for interface automata or I/O-
automata [13], existing model checking and simulation tools
(e.g. UPPAAL [14]) can be used to verify the automata
attached to interfaces.

It is also possible to perform static code analysis for com-
ponent interactions. This requires to extract models that
describe how interfaces are used by other components. Ap-
proaches for this already exist, e.g. in the Jadet tool [15];
for our purpose, the tool must be adapted to extract calls to
EJB interfaces from the control flow to create an interface
automaton, which can then be matched with the automaton
describing the service.

As the contract is formally defined and directly attached to
the interface, component evolution is supported by the ap-
proach. When the implementation of an EJB is changed,
the sequential contract is not touched by the changes, as
it is attached to the interface instead of the business code.
In contrast, when the sequence checks are mixed-up with
the code of the business methods, any changes in the busi-
ness code might affect the sequential contract. The same
applies to component exchange. When an EJB is exchanged
against another implementation, e.g. an implementation of
another supplier, the interface containing the contract does
not implicitly change with the implementation.

The static nature of code annotations allows for using graph-
ical editors for an easier understanding of more complex au-
tomata. A graphical editor could be embedded into devel-
opment environments for Java programs (e.g. Eclipse [16]).
Such an editor could visualize the automaton of interface
classes while editing the interface’s source code.

5.2 Run Time
The integration of interface automata descriptions using Ja-
va annotations allows for run time access to the definition.
At development time the complete definition is available pro-
grammatically. This enables to create common frameworks
to use automata at run time. The knowledge about the cur-
rent state of the interface automaton can be used to enforce
the correctness of call sequences. A common framework can
evaluate calls to an interface and reject calls that are not
allowed. To accomplish this, a technique must exist that
can observe and prevent method calls. Examples for such
techniques are aspect-oriented programming (AOP) [17] and
dynamic proxies [18].

As a proof-of-concept we implemented such a framework for
the Java Enterprise Edition. This framework evaluates the



interface automata attached to EJBs in a system and re-
jects calls if they do not comply with the sequential con-
tract. When calls are rejected, the reason is given in an ex-
ception. The exception also includes a trace, which names
the last states before the rejection and the steps taken to
get to these states. To accomplish this task, the prototype
uses the interceptor concept already contained in the JEE
specification. Interceptors use AOP techniques to intercept
method calls in an JEE environment. The prototype uses
this concept to attach an observer to each bean with an in-
terface automaton. This observer traces the calls to a bean
interface and the bean instance implementing that interface.
Subsequently, all method calls to these interfaces are veri-
fied by the observer with respect to the interface automaton.
When the sequential contract is broken, the observer will
reject the call. Figure 5 visualizes this concept. The left
side shows the interaction of a component with the inter-
face ShoppingCartBean when it has no explicitly modeled
sequential contract. As explained in the motivation, the
business component must check the permission of the call
in the business methods. The right side shows the same
scenario with the observer in use: The observer is notified
about method calls, verifies them against the interface au-
tomaton, and rejects the second login method, since it is not
valid in the example interface automaton shown in listing 1.

For attaching an observer to an EJB, only one annotation is
necessary. Listing 2 shows a bean implementing the interface
IShoppingCart. The annotation @Interceptors refers to
a class from our runtime framework that implements the
observer. The observer class is by this means the central
instance for the enforcement and monitoring of sequential
contracts.

@Management(IShoppingCart.class)

@Interceptors(IAInterceptor.class)

public class ShoppingCartBean implements

IShoppingCart { ... }

Listing 2: The observer is attached to a bean in one
row of source code. The framework only needs this
information and the automaton itself for tracing the
interfaces sequential contract and to reject illegal
calls.

The information about the interface automata states in a
running system also allows for creating a dashboard for mon-
itoring the system. Such a dashboard could give adminis-
trators valuable information about the occurrence of errors
in the system. The state traces allow for giving precise in-
formation about the reasons for these errors.

6. DISCUSSION
The approach presented here aims at using formal tech-
niques for the specification of sequential contracts in Java,
and at enabling their usage in the context of the Java Enter-
prise Edition. We will now discuss the approach with respect
to this objective and the goals stated in the motivation.

From a functional perspective, the goals are reached in gen-
eral: With the definition of meta data annotations as ex-
plained in section 4, the semantics of interface automata

can be used inside Java. On the one hand, permitted call
sequences can be specified. On the other hand, accessing
and interpreting the models is possible in order to build
tools that prevent method calls that do not comply with the
model specifications. The usage of annotations and reflec-
tion mechanism entails that all information is consistently
available in the coherent notation of the programming lan-
guage, and thus directly usable at run time. Java inter-
faces can thus carry information not only about structural
properties, but also about sequential contracts. In contrast
to a generative approach, which is usually followed with
domain-specific languages and in model-driven development,
the code does not need to be synchronized with an externally
defined model. The usage of reflective accessible language
constructs allows to integrate validation frameworks into ap-
plications. These frameworks can use the modeling notation
to ensure correctness of programs with respect to interac-
tion sequences. By this means, validation with respect to
invocation sequences does not have to be mixed-up with the
business logic and is thus separated from it.

Usage of these specifications is only possible if appropri-
ate component models are available that allow to observe
component interactions and – depending on the goal – ma-
nipulate it, too. We used business logic components in the
Java Enterprise Edition here to show that the integration
of the approach into existing frameworks is possible if these
requirements are fulfilled. The integration into JEE could
be implemented with few lines of code.

A disadvantage of using interface automata as formal ba-
sis for sequential contracts is its expressiveness. This ba-
sis disallows e.g. the definition of sequences of the form
addnremoven, where add and remove are methods and n is
an unknown number of calls. Hence the approach has the
same issues in expressiveness as for example the approach
of Cheon and Perumandla [4].

The interface automata described here are limited to a sin-
gle thread, since the EJBs in focus are intended to be used
in one single thread only. Nevertheless, the models allows
for describing a wide range of sequential contracts, that are
often in use with systems using the Java Enterprise Edition,
which is the goal of this paper.

The automata notation is tightly coupled with the inter-
face definition. As shown in section 5, this notation implies
that the automata design follows a certain pattern. This
constraints the freedom for modeling contracts. In our use
cases, these modeling constraints did not have a negative im-
pact. The behaviour of business component interfaces seem
to apply well to this pattern. However, we cannot exclude
that this constraint decreases the applicability.

Considering the purpose of using sequential contracts, the
strategy for handling prohibited method calls is important.
We focused on ensuring valid sequences and thus reject in-
valid calls. Other strategies could include postponing or
scheduling invalid calls until their requirements are met. In
addition, concurrency handling must be considered. In con-
trast to method invocations in components, steps in inter-
face automata are not time consuming. When the compo-
nent can be accessed concurrently, the interface automaton’s
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Figure 5: On the left side, the callee needs to check whether the calls respect the sequential contract. On
the right side, these checks are processed by the observer. The callee can focus on the business issues.

state may differ from the component’s state that it repre-
sents. This has to be considered for the integration into
frameworks that allow for concurrent access to component
instances. However, this is not an issue in the presented in-
tegration for EJBs, as concurrent calls to bean instances are
serialized by the EJB container. Hence these beans are not
concurrently accessible.

In summary, interface automata and their usage in Java as
presented here fulfill the goal to make sequential contracts
available in Java. Not all model features are used, but the
subsets of interest in the context of existing frameworks are
applicable. We therefore think that this approach is promis-
ing, and also plan to evaluate it further by using the ap-
proach in software projects within our department.

7. CONCLUSION
In current programming languages and frameworks, compo-
nent interfaces are usually described structurally. This only
includes the signatures of the available methods. However,
stateful components often assume certain orders of method
calls, e.g. an authentication before further methods may be
called. While several formal techniques exist that allow for
describing call sequences, these abstract concepts need to be
mapped to current programming languages. In this contri-
bution we presented an approach for representing sequen-
tial contracts in Java, using a notation that is integrated
with the Java interface notation. Our notation allows for
programmatically using the contract information at devel-
opment time and at run time. In addition, we implemented
a framework for evaluating calls to Java Enterprise Beans
at run time, which detects and rejects method calls that do
not comply with the sequential contract of interfaces.

However, some questions are still open: The concepts used
in this paper focus on single-threaded access to components.
The sequential contract definition and its implementation
used in this paper must be reconsidered in the future for
handling concurrent access.

As future work, we plan to develop tools to edit the interface
automaton definitions graphically, and to transform contract
information into the formats necessary for existing model
checking tools. As another step, we want to statically verify
the compliance of client code with the behavioural contract.
Due to feedback from the industry, the generation of test
stubs on the basis of permitted call sequences will also be
considered as future work.
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