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Abstract

Formal component models and component-based software engineering have been
subject to research for decades. The resulting component models allow for system-
atic development of large software systems, while usually focusing on a small set
of aspects of an architecture. The formal founding of some languages permits rea-
soning about architecture attributes. However, current programming languages and
component frameworks hardly reflect such features with respect to hierarchical archi-
tectures, context independence, and behavioural descriptions of components. Thus
the frameworks do not leverage the benefits of the profound research of component-
based software engineering, like enhanced understandability, formal reasoning about
quality attributes and ease of maintenance. Instead of creating loosely coupled, self-
describing, and self-contained software components, the frameworks tend to use
tightly coupled modules. This thesis first deals with an analysis of existing formal
component models with different foci. As a result, a set of desirable feature cate-
gories for component models are identified. These categories are related to OSGi, a
module framework that is considered to be integrated into the Java platform. The
results of this comparison are the foundation for a proposal for a new component
model in OSGi. The reference implementation of the proposal is evaluated in a
case study, which shows the applicability of the proposed model. Finally the thesis
discusses the challenges that came up in the case study and addresses issues needed
to be solved for a productive implementation of the component model.
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1 Introduction 1

1 Introduction

This chapter describes the motivation and the problem statement of the thesis, along
with an introduction in component-based software engineering (CBSE) [Szy02] and
why it is still not adopted in practical software engineering. In chapter 1.2 basic
concepts of CBSE are shown and related to the concepts used in frameworks usually
referred to in a component context. The thesis is motivated in chapter 1.1 and an
outline of the document is given in chapter 1.3.

1.1 Motivation

The idea of decomposing problems into smaller parts in a process commonly called
“divide and conquer” is a mature idea which has also been subject of research in
Software Engineering since the early 1970s. Parnas’ work on criteria for the decom-
position of systems [Par72] is one of the first scientific publications related to this
topic in computer science.
Complexity is an important problem, especially in software engineering, as the

systems built today tend to be large projects, having many connections with other
complex systems. Breaking down these projects into manageable parts is a key to
handle this complexity not only for initial development, but also for maintenance.
In addition these manageable parts can be reused in other software projects. Reused
parts are usually well-understood and improvements on these reused parts may be
of benefit to each product using them.
One approach for reducing complexity with “divide and conquer” in software en-

gineering is CBSE. In CBSE a system is decomposed into loosely-coupled compo-
nents. Components are independently deployable units that offer a functionality to
be called by other components and may call other components’ functionality them-
selves. The offered functionality is usually called a provision, while necessary calls
to other components’ functionality are usually referred to as requirement. In CBSE
the software architecture consists of components that are interconnected through
their provisions and requirements. These interconnected components represent the
program. When components are to be reusable in other contexts, they must provide
generic functionality.
Components communicate with each other using well-defined interfaces which

describe the functionality of the underlying component. Connectors between com-
ponents are used to interconnect the requirements of one component with the pro-
visions of another component. Usually, components can be basic components, pro-
viding their functionality in terms of executable code, or composite components,
which provide their functionality by instantiating and interconnecting subcompo-
nents. These composite components may also be subcomponents of a composite,
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thus creating a hierarchical architecture. Such hierarchical architectures provide
different levels of abstraction by hiding the subcomponents of a composite. These
multi-level architectures enhance the understandability of the system by hiding un-
necessary information. Components are usually black-box entities, hiding their im-
plementation details as proposed in Parnas’ information hiding principles [Par72].
A thorough description of component models is given in chapter 2 in this thesis.
Software systems developed using a component-based approach have many ad-

vantages over monolithic software architectures:

1. Software components can be distributed for parallel development.

2. Maintenance of software components is easier, because changes in the com-
ponent implementation can be made locally, without effects on the complete
system, as long as the interfaces are not changed.

3. If components are loosely coupled, single components can be exchanged with
new ones.

These advantages especially take effect in the development and maintenance of large
systems. [Sam97, Chap. 1]
The component models developed as a result of the thorough research do not only

facilitate a structured development of modular systems, but are often also formally
founded [AG97, CS01, CFGGR91, MDEK95, SG94]. This formal foundation al-
lows for verification of system characteristics, specification of component interaction
mechanisms, and simulation of the system before it is implemented.
However, while research on component models is very advanced, current pro-

gramming languages, platforms, and frameworks hardly reflect the related concepts.
Considering modern programming languages like Java [GJSB05] or C# [ISO06],
component definitions are optional and limited to namespaces. Namespaces provide
means to combine sets of classes that semantically belong together. The highest
level of abstraction in modern programming languages are classes and their rela-
tions. Thus external frameworks are needed to provide component definitions and
functionality.
The features provided by these frameworks do not leverage the functionality pro-

posed by formal component models long ago. Thus the practice-driven component
frameworks and platforms cannot benefit from the advanced research of formal com-
ponent models.
This thesis addresses the gap between the state of research and practice-driven

frameworks by comparing the concepts of formal component models with the fea-
tures of a framework for the Java language and platform. The widely-used OSGi
framework [OSG09a] is used for comparison.
The contribution of this thesis is a proposal for a change of the OSGi Service

Platform to provide the features of formal component models. This proposal is
implemented in this thesis and its functionality is evaluated in a case study.
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1.2 Basics

Formal component models have a variety of features and foci, including compo-
nent interconnection [AG97], message flow [CS01], data abstraction and concurrency
[CFGGR91], dynamic architectures [MDEK95, BHP06], or modeling and prediction
of quality attributes [GMRS08, RBH+07, Inf03].
These component models share features like compositionality as well as required

and provided interfaces between components. Figure 1.1 shows a component in for-
mal component models schematically. The appended circle represents a provided in-
terface as a contract defining how to use the component. The semicircular appendix
is a required interface, describing what the component requires from its context. The
rectangle is used to describe a component body. The component in this example
includes interconnected subcomponents implementing the features provided by the
component.

Component

Figure 1.1: A schematic representation of a component in formal component models
with required and provided interfaces as contracts, and subcomponents.

The component’s functionality can be accessed via the interfaces. In formal com-
ponent models, these interfaces, the component itself, and the interconnection of
components is defined formally, permitting e.g. a verification of the component
interconnection.
Practice-driven component frameworks like OSGi, the Enterprise Java Beans

(EJB) [Sun09c] in the Java Enterprise Edition (JEE) [Sun09b], or the Common Ob-
ject Request Broker Architecture (CORBA) Component Model [Obj06] lack some
of the features of formal component models. Figure 1.2 shows components usually
found in practice-driven component frameworks. Hierarchical component architec-
tures are not supported, as the concept of composite components is not implemented.
Additionally, components state their requirements to their context by directly ref-
erencing the provided interfaces of other components, hence employing class level
dependencies that have to be resolved at compile time. These components are not
context independent, as the desired context has to be available for the component’s
compilation.

1.3 Thesis Outline

Chapter 2 will introduce formal component specifications by presenting a selection of
specification languages and their included component models. The concepts are then
compared to identify similarities and differences between the approaches. Chapter
3 gives an overview of the OSGi Service Platform. The framework is explained
and its component model is compared to the essential features of formal component
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References

Component

Component

Figure 1.2: In practice-driven frameworks, component structures are usually flat, i.e.
no subcomponents are available. They also do not explicitly state their
requirements to their context, but directly reference the provisions of
other components.

specifications. In chapter 4 a component model for OSGi is described, which was
developed and implemented in this thesis. The proposed component model aims at
closing the gap between the formal component specifications and OSGi. Chapter 5
describes the evaluation of the proposal using a case study. A discussion in chapter
5.2 discovers the strengths and the weaknesses of the proposed component model.
Chapter 6 discusses related work before the thesis is concluded in chapter 7.
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2 Formal Component Specifications

Modular architectures are one of the key concepts for managing the complexity of
large software systems. Thus many approaches for describing modular architec-
tures exist. In this chapter, the fundamentals of component-based software engi-
neering (CBSE) are introduced first, before different architecture description lan-
guages (ADL) are examined, which are used for describing software components
and their communication. For this purpose, ADLs with different foci are consid-
ered: SOFA 2 [BHP06] focuses on dynamic architectures, Palladio [RBH+07] and
KLAPER [GMS05] on the modeling and prediction of quality requirements. Uni-
Con’s [SDK+95] aim is to be universally applicable and Pi [SG94] focuses on data
abstraction and concurrency. UML is also considered, though it is not a formal com-
ponent specification, but a widely-used means for describing software architectures.

2.1 Component-based Software Engineering

The term software components is not defined unambiguously. Hopkins integrates
several definitions in [Hop00]. His definition is: “A software component is a phys-
ical packaging of executable software with a well- defined and published interface.”.
Szyperski’s “Compoent Software” [Szy02], which is one of the foundational works
on CBSE, contains three different definitions: (1) “Software components are binary
units of independent production, acquisition, and deployment that interact to form a
functioning system.” [Szy02, Preface]; (2)“A software component is a unit of compo-
sition with contractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to composition
by third parties.” [Szy02, Chap. 4.1.5]; and (3) “A component is a set of normally
simultaneously deployed atomic components”, with the following definition of atomic
components: “An atomic component is a module and a set of resources”. In the last
definition, modules and resources are: (1) “A module is a set of classes and possibly
non-object-oriented constructs, such as procedures or functions” and (2) “A resource
is a ‘frozen’ collection of typed items.” [Szy02, Chap. 20.3]. Many more definitions
exist, as can be seen in [BDH+98].
Despite the lack of an unambiguous definition, some component characteristics can

be derived, for they are repeatedly described: A component is a black-box entity,
which is reusable in different contexts without any need of knowledge about the com-
ponent’s internals or modification of those. To enable reusability, the components
have to be self-describing, i.e. they need to provide publicly visible, well-defined in-
terfaces. Components consisting of interconnected subcomponents form component
hierarchies, which ultimately form the application [BHP06].
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2.2 Palladio Component Model

The Palladio Component Model (PCM) [RBH+07] is an architecture language with
focus on performance prediction. It has been mainly developed at the University
of Oldenburg and the Karlsruhe Institute of Technology. The PCM is implemented
with the Eclipse Modeling Framework (EMF) [Ecl10a], and is thus based on the
EMF/Ecore meta model. Systems in Palladio are developed using a rich graphical
modeling software software called PCM-Bench [Kar09].
In Palladio a system consists of components communicating with shared interfaces.

Components can be composite to form a hierarchical architecture. The PCM-Bench
can simulate a system’s architecture. Processing nodes and links between them
can be defined as simulated hardware, and components can be allocated to these re-
sources. Additionally, a usage model can be defined which describes a synthetic load
for a simulation with estimated user behaviour. Due to this simulation, performance
issues in the architecture can be identified before the system is implemented.

2.2.1 Interface Definition

Components in Palladio define required interfaces to describe which functionality is
required by other components, and provided interfaces to describe functionality that
is offered to the context. Messages are shared using operation calls on these shared
interfaces. Communication via message flow, unix-pipes etc. is not considered. In
the PCM interfaces can be defined at three levels of details:

• Signature List Based Interface
The interface consists of method signatures, which are comparable with oper-
ation signatures of programming languages like Java. The operations have a
return value, a name, in, out and inout parameters as well as exception types.

• Protocol Enhanced Interface
The protocol enhanced interfaces define permitted sequences of operation calls.
PCM does not define the syntax of the protocol, thus different concepts like
finite state machines or petri-nets may be used. For performance evaluation,
the protocols used in the interfaces need to be compatible.

• Quality of Service Enhanced Interface
For annotating interfaces with properties and constraints regarding the quality
of service, they can be attributed using the Resource Demanding Service Effect
Specification (RDSEFF) [RBH+07].

2.2.2 Component and System Definitions

Components in Palladio are active or passive units of computation with provided
and optionally required interfaces. The PCM defines four component types, in three
levels of abstraction, which represent three phases in the development time of an
architecture. The component type hierarchy is shown in figure 2.1.
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Figure 2.1: Component type hierarchy in Palladio [RBH+07]

• Provides Type
The provides type is the most abstract type and just contains the information
necessary for receiving the provided functionality. The requirements of the
component are not considered at that development phase. As the possible
requirements of the component are not defined yet, the description needs to
be refined to the CompleteType in a later phase.

• Complete Type
Components of the complete type specify their provided functionality as the
provides type does. Additionally, their requirements are defined. This type is
used in a later phase of the development, when the complete architecture with
all transitive requirements is considered.

• Implementation Type Components
Implementation type components are a refinement of complete type compo-
nents. They additionally contain implementation details, describing how their
functionality is implemented. Implementation type components may be com-
posite components which consist of interconnected subcomponents, and basic
components, describing their functionality by a Service Effect Specification
(SEFF). The SEFF is a behavioural description similar to UML activity di-
agrams [Obj09b], but it just considers behaviour concerning the required or
provided roles or resource consumption of the hardware underlying the com-
ponents, i.e. CPU cycles, hard disk times, etc.
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A system in Palladio is defined in a separate diagram. In this diagram compo-
nents are instantiated and the instances are interconnected. The requirements and
provisions of component instances may be delegated to the systems context, thus
rendering the system a composite component itself.

2.2.3 Deployment and Simulation

As the focus of Palladio is performance prediction, the PCM requires means to
describe a deployment environment. For this reason, a resource environment can
be defined. The resource environment has resource containers, which are nodes
containing e.g. processors and hard disks, and linking resources, which represent
interconnections between the resource containers, and can be used to represent e.g.
network connections. The resource demand of basic components is given with an
abstract value, due to the possibly changing underlying hardware. The CPU load can
e.g. be stated in cycles. The resource demand may be given not only as a constant,
but also as complex functions, to cover probabilistic loads and dependencies on
parameters like the size of input data.
A separate allocation diagram is used to allocate the components of a system

to resource containers in a resource diagram. It is also possible to define a usage
model, modeling actions of users interacting with the system and thus describing
a workload. With this information the architecture can be simulated to evaluate
performance issues in the system. As this thesis focuses on the static architecture
description, the simulation will be omitted here.

2.2.4 Example

Figure 2.2a shows an example of a repository in the PCM-Bench. A repository stores
the defined interfaces and components of an architecture. The exemplary repository
includes two interfaces, IWeb and IDatabase. IDatabase and IWeb each declare one
operation with two parameters. The PCM-Bench does not permit to identify in, out,
or inout parameters. Although the component model defines three levels of detail
for interface description, the PCM-Bench does not support Protocol and Quality of
Service Enhanced Interfaces.
The exemplary repository depicted in figure 2.2a defines two components, Web

and Database, which both are basic components. The component Web provides the
interface IWeb and requires the interface IDatabase. Its implementation is given
using a SEFF, which is defined in figure 2.2b. The component Database provides
the interface IDatabase. The SEFF in figure 2.2b defines the implementation of the
operation submit of the component Web. After the operation call, the component
performs an internal action, which has a resource demand of 20 CPU cycles. After
the internal action, a call of the store operation of the required interface IDatabase
is made before the control flow ends.
Figure 2.3 shows an example of a resource environment that includes two resource

containers and one link between them (the connection is not depicted in the figure).
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IDatabase

void store(string name, string surname)

IWeb

void submit(string name, string surname)

Database

SEFF <store>

PassiveResourceCompartment

ComponentParameterCompartment

Web

SEFF <submit>

PassiveResourceCompartment

ComponentParameterCompartment

<<Provides>>

<<Provides>>

<<Requires>>

(a) Example of a Palladio repository

<<ExternalCallAction>>

Required_IDatabase_Web.store

InputVariableUsage

OutputVariableUsage

<<InternalAction>>

Prepare Call

ResourceDemand

20 <CPU>

(b) Example SEFF in Palladio

Figure 2.2: Figure (a) shows an exemplary repository in Palladio. The component
Database provides the interface IDatabase. The same interface is required
by the component Web, which also provides the interface IWeb. In figure
(b) the SEFF of the component Web is shown. The first action of the
SEFF is an internal action with a resource demand of 20 CPU cycles.
The next step models a method invocation store of the required interface
IDatabase, before the execution of the SEFF is finished.
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Figure 2.3: The exemplary resource environment contains two resource containers
(Server and Client) and a link between them.

2.3 The Π language

The Π language [SG94] is a formal textual component specification and intercon-
nection language with a focus on distributed systems, especially data abstraction
and concurrency, and the incremental development of software systems [CFGGR91,
SG94]. In Π a software component is considered an autonomous unit of computation
which can be concurrently executed. Thus the components are called Concurrently
Executable Modules (CEM).
A CEM consists of four sections as shown in figure 2.4: import, export, common

parameters and the body. The export and import sections formally describe the types
to be imported from or to be exported to other CEMs, including their operations.
The body provides the implementation of the export expressed in the imported data
types and operations. The body may also introduce new data types and operations
to realize the export. The common parameters section describes imported properties
which are also exported, thus publishing some information about the import through
the export interface.
Π provides a view concept consisting of a type view, an imperative view, a concur-

rency view and a type connection view. The type view describes the static properties
of the data types of a CEM, i.e the properties independent from execution. The im-
perative view expresses the operations specified in the type view in an imperative
manner, thus showing how a request is executed including possible side effects of
the operation. In the concurrency view, the import and the export sections are
described with respect to concurrency.
Unlike most other ADLs, the import of a CEM is not an interface defined sep-

arately and shared by all CEMs in the system, but is directly contained in the
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Figure 2.4: A CEM in Π consists of four sections. Import, export and common
parameters define the interfaces, while the body defines the implemen-
tation, which is hidden to the CEM’s context. [SG94]

component description. The import is a formal description of the required interface
in terms of types, including their behaviour and concurrency constraints. For this
reason, the type connection view is needed to define a mapping of import, export
and common parameters sections of CEMs. This view is used to construct composite
CEMs and, finally, complete system architectures.

2.3.1 Component Interface Specification

The export, import and common parameters sections are described by the type view,
the imperative view and the concurrency view. Each view is mandatory.

The Type View

The data types required, used, and provided by the CEM are described in the type
view. A type is defined by a name, a set of operation signatures and a set of invariant
properties expressed in equations. Optionally, informal descriptions can be provided.
Listing 2.1 shows the definition of the type Car in the export section, thus defining

a provided data type that can be used by other CEMs. The type Car has five
operations. As an example, the operation setLocation is a function to be called on
a Car object. The method invocation returns a Car object. The method takes a
parameter of the type Location, called loc. The type Location has to be defined
in either the body, the import, or the common parameters section to be used in
this definition. Another operation is called getLocation. It is to be called on a Car
object and also returns a Car object. The equation describes the invariant that the
operation getLocation called on a Car object with a preceding setLocation call will
return the location given as parameter in the setLocation call. Types in the import,
common parameters, and body section are defined in the same way.

type view specification

export
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type Car

general description { A car may be used for driving }

operation start : Location -> Car

operation stop : Car -> Car

operation isStarted : Car -> Boolean

equations

isStarted(start(loc)) = true;

isStarted(stop(start(loc))) = false;

operation setLocation : Car -> Car

variables loc : Location

operation getLocation : Car -> Location

equations

getLocation(setLocation(loc)) = loc

Listing 2.1: Example of the type view on an exported type in Π

The Imperative View

While the type view describes operations on types as functions, it does not define
the possible side effects of an operation. These can be expressed in the imperative
view on a CEM.
In the imperative view, the operations of a type are expressed in a syntax similarly

known from imperative programming languages like Java or Interface Definition
Languages (IDL) like the OMG IDL [Obj08]. Each operation has a name, a return
value, and parameters. A parameter is described by its direction (in, out, or inout),
a name and a type.
As the type Car, defined in listing 2.1, exports an operation that uses the type

Location as a variable, CEMs that use this type also need access to a CEM imple-
menting the type Location. Thus listing 2.2 shows the imperative view on a type in
the common parameters section. The type Location is imported from the context
and exported to the context again. The types String and Tuple 2 used in this listing
are also to be described by the body, the import or the common parameters section
of this CEM, as the Π language itself does not provide any types.

imperative view specification

common parameters

type Location

operation getName() : String

operation getCoordinates() : Tuple_2

Listing 2.2: Example of the imperative view on a common parameter type in Π

The Concurrency View

The type view and the imperative view specify the functionality of types in a CEM.
This presumes that the operations are allowed to be executed. The concurrency
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view is used to define a sequence of operation calls that is permitted on an instance
of a type, including concurrent calls. Path expressions [See87] over operation names
are used to formally state which concurrency constraints imported operations must
fulfill or, respectively, which concurrency constraints the exported operations have.
These path expressions are essentially regular expressions using operation names as
words, extended by operations regarding concurrency and simultaneity. Figure 2.5
shows the list of operators of path expressions. Additionally, preconditions about
states can be given for operations in the concurrency view. These preconditions
relate to an observable state of the CEM.

Figure 2.5: List of operators of path expressions in Π [SG94]

Listing 2.3 shows the concurrency view on the exported data type Car. The
method start must be invoked first. After this invocation, optionally and repeatedly
setLocation may be executed, or simultaneously (i.e. concurrently, unlimited times
in parallel) getLocation or isStarted is permitted. At last, the method stop must be
called. Alternatively to this sequence, isStarted may be called simultaneously. Path
expressions are implicitly repeatable as a whole, thus a car can always be started
after stopping.
Preconditions are used in this example to describe the permission for execution

depending on internal states. In listing 2.3 preconditions are defined for the start
and stop operations. They are only permitted to be executed when the operation
isStarted returns a specified value.

concurrency view specification

export

type Car

path expression

( start ;

(* [ setLocation | { getLocation } | { isStarted } ] *);

stop )

| { isStarted }

precondition definition list

precondition of start is not(isStarted)

precondition of stop is isStarted

Listing 2.3: Example of the concurrency view on an exported type in Π
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2.3.2 Component Implementation

The implementation of the exported types in Π is defined in the body section of a
CEM. For this purpose, the body can use the imported types and define its own op-
erations. Components may be atomic or composite. Atomic components implement
their functionality directly, while the body of composite components consists of a
configuration of subcomponents. Basic components are the third type of compo-
nents, besides atomic and composite components. These components are described
by their interfaces, as their implementation is considered a black box.

Atomic Components

The body of atomic components is described by the type view or – alternatively –
the imperative view. In Π a component implements exactly one data type. Thus
the body section is used for the construction of this one type, using imported types
or internal definitions. The component’s type view is notated using the same alge-
braic specifications that are used for describing the exported type. This enables the
developer to verify the compatibility of the export and its implementation. Listing
2.4 shows an excerpt of the algebraic implementation of the exported type Car. The
operation create car tuple is an operation of an imported data type which stores
two values, a boolean for the car being started or not, and a Location object.

type view specification

body

construction of type Car is CarImplAlgebraic

operation start : Car -> Car

variables loc : Location

equations

start(loc) = create_car_tuple(true, loc)

operation getLocation : Car -> Location

equations

getLocation(create_car_tuple(true, loc)) = loc

[...]

Listing 2.4: An excerpt of an algebraic implementation of a component in Π.

Alternatively, the implementation of types can be specified in the imperative view,
using a language with the features of higher object-oriented programming languages.
Listing 2.5 shows an excerpt of the imperative implementation of the exported type
Car.

imperative view specification

body

construction of type Car is CarImplImperative

operation start(in loc : Location) returns Car

begin



2 Formal Component Specifications 15

return create_car_tuple(true, loc);

end

operation getLocation(in car : Car) returns Location

description

{ The value is stored in the second

position of the tuple, with a

starting index of 1. }

begin

return getValue(1, create_car_tuple(true, loc)) = loc

Listing 2.5: An excerpt of an imperative implementation of a component in Π.

Composite Components and System Assembly

Composite components consist of interconnected instances of subcomponents. In-
stantiation of components is called incarnation in Π. The implementation of com-
posite components is also called configuration. A configuration contains a set of
incarnations of subcomponents, their interconnections, and the interconnection be-
tween the specification of the subcomponents and the specification of the parent
composite component. As a composite component is a component itself, it also has
exported and imported types as well as common parameters. These are connected to
the according sections of subcomponents. Thus the composite component delegates
the operation calls to its subcomponents. A system in Π is a composite component
that is not embedded into another composite component.
An example for a configuration in Π is shown in listing 2.6. In this example, two

components are incarnated first. Each component incarnation has a name. In a
second step, the components within the configuration are interconnected. In this
case, Location – the imported type of Car – is connected to the export of a type
called PointOfInterest, which has not been introduced in the examples above. In
the last step, the export of the composite component is connected to the export of
the Car type.

configuration CarManagement

component incarnations

car : Car;

poi : PointOfInterest;

component interconnections

connections of car

from poi import

type Location <- PointOfInterest

operations

getName <- getPoiName;

getCoordinates <- getGeoLocation;

connections of Export
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from Car import

type Car <- Car

operations

start <- start;

stop <- stop;

isStarted <- isStarted;

getLocation <- getLocation;

setLocation <- setLocation;

end configuration CarManagement

Listing 2.6: A configuration in Π

2.4 SOFA 2

SOFA 2 [BHP06] is a component system mainly developed by the Distributed Sys-
tems Research Group at the Charles University of Prague. Its focus includes dynamic
reconfiguration of architectures and different communication techniques. The com-
ponent model of SOFA 2, which is described in [ČHPR09], is based on a well-defined
meta-model. The meta-model is described by the Meta Object Facility (MOF) tech-
nology, which is also the basis for the Unified Modeling Language (UML). A system
configuration in SOFA 2 is expressed in the Extensible Markup Language (XML).
The components are implemented in Java.
The architectural elements in SOFA 2 are components and connectors which are

interconnected using shared interfaces. The components are represented to their
context by so called frames. The frame is a black-box view of a component, which
defines its provided and required interfaces. A so-called architecture of a component
provides the component’s implementation details. The architecture either directly
implements a frame (primitive component), or composes subcomponents to imple-
ment the frame.

2.4.1 Frame and Interface Definition

The component frame defines the borders of the component and specifies the re-
quired and provided interfaces. The component content is the implementation of
the component and may be executable code or an architecture of subcomponents.
A frame may be implemented by many components, thus the components imple-
menting the same frame are exchangeable with each other. At run time, the control
part represents the component and the control interfaces allow access to component
meta data. An abstraction of a SOFA component is shown in figure 2.6.
Listing 2.7 shows an example of the definition of a simple SOFA 2 interface. The

interface has the name auth and a reference to a Java interface. The Java interface
defines the functionality offered by the SOFA interface.

<itf-type name="IAuthentication"

signature="org.example.IAuthentication" />
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Figure 2.6: Components in SOFA are represented by a control part at runtime. The
frame forms the component border and describes provided and required
business interfaces which define the provided and required behaviour.
Control interfaces are also available to dynamically control the life cycle
of the component. The component content may be a direct implemen-
tation of the component behaviour or be composed of subcomponents.
[ČHPR09]
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Listing 2.7: Interface definition in SOFA 2

The interface may be used by different component frames. The sample frame in
listing 2.8 has the interface defined in listing 2.7 as a required interface. The comm-
style attribute of the requires and provides tags define the communication style
supported by this frame for the given interface. As frames are design time units,
rather than run time units, they are not implemented in the underlying programming
language.

<frame name="AuthenticationFrame">

<requires name="users"

itf-type="sofatype://IUsersDB"

comm-style= "method_invocation" />

<provides name="auth"

itf-type="sofatype://IAuthentication"

comm-style= "method_invocation" />

</frame>

Listing 2.8: Frame definition in SOFA 2

2.4.2 Connector and Architecture Definition

Connectors in SOFA 2 [BP04] are, besides components, first class entities. The SOFA
component model leverages four communications styles for component interaction:
synchronous operation calls, asynchronous message delivery, uni- and bidirectional
data streams, and communication using shared memory. However, the shared mem-
ory communication style is not supported by the SOFA 2 runtime, though the lan-
guage allows for custom communication styles to be added by implementing them
in Java.
Architectures in SOFA 2 may be primitive, which means they implement the

behaviour of a frame directly, or composite, using subcomponents. A primitive ar-
chitecture is defined by specifying a name, the frame of the architecture, and the
implementation. A composite architecture needs to define subcomponents, connec-
tors, and connections of an implementation instead. A composite architecture with
required or provided interfaces could itself be subject to composition.
Figure 2.7 shows an abstraction of a simple SOFA 2 architecture with connec-

tors. Components 1 and 3 are composite components, while component 1 consists
of the components 2 and 3, and component 3 in turn consists of the components
4 and 5. Component 1 is the whole application. The darker boxes on the side of
the components represent the required and provided interfaces of the components.
The arrows are connectors between the interfaces. The source of the arrow is the
required interface and the interface the arrow is pointing at is the provided interface
(component 4 to component 5) . In case of a connection between a parent compo-
nent and its subcomponent, the arrow represents a delegation or requirements or
provisions (e.g. component 3 to component 4). The delegation indicates that the
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requirement or provision of a subcomponent is also the requirement or provision of
the parent composite.

Figure 2.7: Components in SOFA 2 can be composite (Component 1 and 3) or
primitive (2, 4 and 5). Component 1 is the whole application. The
darker boxes represent required and provided interfaces of the compo-
nent. The arrows are connectors providing communication between the
components. [ČHPR09]

Examples

In listing 2.9, a primitive architecture is defined. The architecture is implemented
by the Java class org.example.LDAP Authentication.

<architecture name="LDAP_Authentication"

frame="sofatype://AuthenticationFrame"

impl="org.example.LDAP_Authentication" />

Listing 2.9: A primitive architecture in SOFA 2

In listing 2.10, a composite architecture is defined, which uses the architecture
LDAP Authentication defined in listing 2.9 as a subcomponent. The frame of Au-
thenticationTest is a simple, empty frame without any interfaces. It is the top-level
component of the application.

<architecture name="AuthenticationTest"

frame="sofatype://AuthenticationTestFrame">

<sub-comp name="ldap_auth"

frame="sofatype://AuthenticationFrame"

arch="sofatype://LDAP_Authentication" />

<sub-comp name="testDataSource"

frame="sofatype://LoginTestDataSourceFrame"

arch="sofatype://LoginTestDataSource" />
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<connection>

<endpoint sub-comp="testDataSource" itf="auth"/>

<endpoint sub-comp="ldap_auth" itf="auth"/>

</connection>

</architecture>

Listing 2.10: A composite architecture in SOFA 2

In this example, the architecture AuthenticationTest instantiates the components
LDAP Authentication and LoginTestDataSource. LDAP Authentication provides
the interface IAuthentication, which is stated as required interface by the component
LoginTestDataSource (not shown in the examples). The composite architecture can
thus interconnect these components using the shared interface.
The composite architecture in this example is a top-level component and thus

neither requires nor provides interfaces.

2.5 UML Composition Diagram

The Unified Modeling Language (UML) [Obj09a, Obj09b] is a language developed
by the Object Management Group (OMG) and standardised by the International
Organization for Standardization (ISO) as ISO/IEC 19501. The current version
of the UML is 2.2. The UML is not an ADL in terms of the other languages
presented here, but a set of notations which may also be used to represent software
architectures. While the language allows for different structural and behavioural
descriptions of systems, the capabilities for architecture description are focused on
here.
The specification of UML mainly consists of semi-formal diagrams and informal

text, as the semantics of UML is not formally defined. Despite this fact, the UML
is widely-used for architecture description and will thus be considered here. In
general, the UML provides different facilities for the notation of elements. The
specification defines the abstract syntax of the language, but not the concrete syntax.
For simplicity reasons, the graphical notation that is used in the UML specification
document will also be used here.

2.5.1 Interface and Component Definition

UML interfaces are defined as an own entity, consisting of a name and a list of
operation signatures. Components in UML are entities containing arbitrary content
as implementation details. The implementation may e.g. be described using UML
class diagrams and UML state diagrams, rendering them to be simple components.
Composite components are insofar different from simple components as their im-
plementation consists of internal component instances and their interconnection. A
system in UML is also modeled as a composite component.
Interfaces are attached to components using interaction points called ports. The

ports reference well-defined interfaces to be provided or required. They describe the
structural aspects of the interaction by stating required and provided functionality.
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The component owning the port can access the environment using the port’s re-
quired interfaces. The environment can also access the component only through the
interfaces provided by its ports. The set of provided interfaces attached to a port
is called the type of a port. Additionally, behavioural constraints can be given for
single interfaces, ports, or components. The definition of behavioural constraints is
mentioned by the specification, but not explained.

2.5.2 Connection Definition

Components are interconnected through their provided and required interfaces. A
required interface of a component is assembled with a provided interface of an-
other component through assembly connectors. Cyclic dependencies are not allowed.
When connected, the requiring component can use the provided functionality. For
the connector to be applicable, the involved required and provided interfaces must
be compatible, i.e. the provided interface must offer the same or more operations as
the required interface.
For interconnecting a component with its parent composite, the delegates connec-

tor is used. In a composite the provided interfaces are implemented by the internal
components. The delegates connector is used to provide the functionality that an
internal component of the composite provides. The delegates connector is also used
to export one or more required interfaces of internal components as an required
interface of the composite component.

2.5.3 Graphical Notation and Example

An interface is notated as a rectangle with two parts. the upper part contains the
key word Interface and the interface’s name. The lower part contains the list of
operation signatures. The operation signature is similar to those known of current
programming languages like Java or C#. An exemplary interface definition is shown
in figure 2.8 at the right side.
Components are also notated as a rectangle. This rectangle contains the key word

component and the component’s name, and alternatively as a graphical represen-
tation of the key word component the icon shown in the upper right corner of the
component in figure 2.8 at the left side. Both representations of the key word may
coexist. A component’s port is notated as a small rectangle attached to the com-
ponent. A port has a name, which should be written next to it. A reference to a
required or provided interface is notated with the ball and socket notation, as to be
seen in figure 2.8. The provided interface is Voting, and the required interface is
Database. The definition of the interface Database is not included in this example.
Figure 2.9 shows an example of an composite component in UML. The composite

component Store has a provided interface OrderEntry and a required interface Ac-
count. It has interconnected, internal component instances. Component instances
are notated as components with a colon in front of their name. The assembly con-
nector, which interconnects a requirement with a provision, is notated with as the
ball and the socket engaged, as shown in figure 2.9 between the components Order
and Customer. The component instance Order implements the provided interface
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Figure 2.8: On the left side a component called Election is represented with a port
and two interfaces, a provided interface Voting and a required interface
Database. On the right side, the interface Voting is defined.

OrderEntry, indicated by the delegate connector, which is notated with an arrow.
The required interface Account originates from the internal component instance
Customer and is exported as a required interface of the composite component.

Figure 2.9: The store is a composite component, which embodies three component
instances. The store has a required and a provided interface which are
delegated to or from internal components. [Obj09b]

2.6 UniCon

UniCon is an ADL invented by Shaw et al. [SDK+95] with the focus on offering
functionality and entities that were widely used by software architects at the time
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the language was developed, but were not supported by a language and according
tools.
The main elements of a UniCon system are components and connectors. Both

define the implementation and specifications shown in figure 2.10. The specification
has a type and a unit of association. The associative units of components are
players. Connectors use ports as associative units. These associative units are used
for interconnecting components using connectors.

Figure 2.10: The main architecture elements in UniCon are components and con-
nectors. Both consist of a specification, which has a type and a unit of
association, and an implementation. [SDK+95]

2.6.1 Component Definition

Components are units of computation. They are specified by an interface definition,
its type and a set of players. An interface is an instance of a type. A type constrains
the set of possible players for that interface. Players are used for connections between
components and connectors, and are explained in section 2.6.3.
Components may be primitive or composite. Primitive and composite compo-

nents can be distinguished by their implementation. The implementation of prim-
itive components is specified with an implementation type. Implementation types
are e.g. source, indicating that a source code file represents the implementation,
or executable, stating an executable file to be the implementation of the primitive
component. Implementation types may also require attributes, e.g. parameters to
pass to an executable. New implementation types may also be introduced by the
developer.
Composite components define a configuration within their implementation section

by instantiating and interconnecting components using connectors. Subcomponents
can be primitive or composite components as well. This structure allows for hierar-
chical component systems.
As UniCon doesn’t validate the referenced implementation file representing a com-

ponent, the programmer has to ensure that the implementation complies with the
specification.
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2.6.2 Connector Definition

Connectors are definitions for the relations of components among each other. They
enable components to communicate. Connectors are not necessarily explicitly repre-
sented by source code, but may be a shared memory or more complex communication
mechanism like Remote Procedure Call (RPC).
Connectors are specified by a protocol, its type, a set of roles. Similarly to the

component interface type, the connector protocol type constrains the set of pos-
sible roles of a protocol. Roles are used for connections between connectors and
components, and are explained in section 2.6.3.
The implementation of a connector is always BUILTIN, defining the connection

to be Unix pipes. BUILTIN is the only implementation type supported by the lan-
guage. Also, while composite connectors are generally supported by the component
model, they are not supported by the language.

2.6.3 Component Interconnection

Components and connectors are represented to their context by their specifica-
tion. I.e., other elements can use them without knowing the implementation. With
this property, the elements in UniCon follow Parnas’ information hiding principles
[Par72]. The type of a specification defines the supported type of players or roles
for that component. UniCon provides a predefined set of types for components and
connectors. Components and connectors are interconnected using the players and
roles as shown in figure 2.11. The type of a player and an associated role must
match for the configuration to be valid.

Figure 2.11: A component in UniCon has one or more players, which are its points
of interconnection. The players are connected to matching roles of
connectors to enable communication.

UniCon defines 14 player types, which represent provided and required services.
Interfaces can provide services in terms of operations (RoutineDef ), data (Glob-
alDataDef ), output operations as system calls (WriteFile), sequential file writ-
ing (WriteNext), writing in Unix Pipes (StreamOut) and remote procedure calls
(RPCDef ). They can also require services accordingly with the player types Rou-
tineCall, GlobalDataCall, ReadFile, ReadNext, StreamIn and RPCCall, which are
described in detail by Shaw et al. in [SDK+95]. The player types PLBundle and
RTLoad differ from the other types, as RTLoad enables to give information required
for real-time scheduling of the component and PLBundle can bundle a collection of
operation and data players.
A component type is used to express the intention of the component’s provided

functionality. The number, types, and specification of players for a component



2 Formal Component Specifications 25

is restricted by the component type. As an example, the component type Filter
supports the two player types StreamIn and StreamOut.
Connectors may have one of seven built-in connector types. Each connector type

restricts the number, type and specification of roles for a connector, similarly to the
component types.
Each role type accepts one or more player types. As an example, the connec-

tor type Pipe defines the role types Source and Sink to be supported. The role
type Source accepts the player type StreamOut of the component type Filter, and
ReadNext of SeqFile. The role type Sink accepts the player type StreamIn of the
component type Filter, andWriteNext of SeqFile. Thus a connector of the type Pipe
can be used to interconnect two components of the type Filter. Role types may be
attributed with additional information as parameters. Detailed tables of attributes,
role and connector types, as well as player and component types can be found in
[SDK+95].

2.6.4 System Configuration

A system in UniCon is a composite component without players. A composite com-
ponent is defined by its parts, its configuration, and an abstraction. The parts are
instantiations of components and connectors, which constitute the composite com-
ponent. The configuration is the association of component players with connector
roles, that interconnect components and connectors. The abstraction specifies how
the players of the interface are associated to the players of the implementation. As
systems in UniCon are made up of composite components, the configuration of a
system and the configuration of subsystems are the same.

2.6.5 Example

Listing 2.11 shows the definition of a primitive component called stack. The compo-
nent contains an interface definition and the implementation part. The implemen-
tation refers to the source file stack.c, a source code file written in C. The interface
of the component has the type Computation. The type Computation supports the
player types RoutineDef, RoutineCall, GlobalDataUse and PLBundle. In this ex-
ample, the interface has one player of the type PLBundle. The members of the
PLBundle are four RoutineDefs, each given with a name, the player type and the
signature of the provided operation. The signature is a list of parameters and its
syntax depends the programming language.

COMPONENT stack

INTERFACE IS

TYPE Computation

PLAYER stackness IS PLBundle

MEMBER (init_stack; RoutineDef; SIGNATURE (; "void"))

MEMBER (stack_is_empty; RoutineDef; SIGNATURE (; "int"))

MEMBER (push; RoutineDef; SIGNATURE ("char *"; "void"))

MEMBER (pop; RoutineDef; SIGNATURE ("char *"; "void"))

END stackness
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END INTERFACE

IMPLEMENTATION IS

VARIANT stack IN "stack.c"

IMPLTYPE (Source)

END stack

END IMPLEMENTATION

END stack

Listing 2.11: A sample component in UniCon [SDK+95]

The example in listing 2.12 shows the declaration of a primitive connector called
Unix-pipe. The connector in this example has the type Pipe.
Additionally, but not presented in this example, protocols may include assertions

that constrain the entire connector, like rules about timing or ordering. These
assertions are defined as property lists within the protocol definition.
The primitive connector in example in listing 2.12 has the type Pipe and specifies

the roles Source and Sink. Both roles are constrained with the optional attribute
MAXCONNS. This attribute constrains the maximum number of players, that this
role can be bound to. The implementation of the connector is set to BUILDIN,
which specifies the connector to be a primitive connector and its implementation to
be Unix pipes.

CONNECTOR Unix-pipe

PROTOCOL IS

TYPE Pipe

ROLE source IS source

MAXCONNS (1)

END source

ROLE sink IS sink

MAXCONNS (1)

END sink

END PROTOCOL

IMPLEMENTATION IS

BUILTIN

END IMPLEMENTATION

END Unix-pipe

Listing 2.12: A sample connector in UniCon [SDK+95]

Listing 2.13 is an example of a system with a display showing the output of a ran-
dom number generator. The components communicate using the Unix-pipe declared
in listing 2.12. The composite component mySystem instantiates the subcomponents
and interconnects the players with the roles to form a system. The system has no
players itself. It could however provide and require behaviour by defining players
in its interface. Some of the internal roles would be connected to the composite
component’s players then, which defines the communication of the context with the
internal components. This would render the composite component a subsystem that
can be used in a greater context.
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COMPONENT randomNumberGenerator

INTERFACE IS

TYPE Filter

PLAYER output IS StreamOut

SIGNATURE ("line")

PORTBINDING (stdout)

END output

END INTERFACE

IMPLEMENTATION IS

VARIANT randomNumberGenerator IN "rng.c"

IMPLTYPE (Source)

END stack

END IMPLEMENTATION

END randomNumberGenerator

COMPONENT display

INTERFACE IS

TYPE Filter

PLAYER input IS StreamIn

SIGNATURE ("line")

PORTBINDING (stdin)

END input

END INTERFACE

IMPLEMENTATION IS

VARIANT display IN "display.c"

IMPLTYPE (Source)

END stack

END IMPLEMENTATION

END display

COMPONENT mySystem

INTERFACE is

TYPE General

END INTERFACE

IMPLEMENTATION IS

/* Instantiate the random number generator,

the display and the connector Unix-pipe. */

USES rng INTERFACE randomNumberGenerator

USES display1 INTERFACE display

USES P PROTOCOL Unix-pipe

/* Interconnect the internal elements */

CONNECT rng.output TO P.source

CONNECT display1.input TO P.sink

END IMPLEMENTATION
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Listing 2.13: A sample system in UniCon

2.7 KLAPER

KLAPER (Kernel LAnguage for PErformance and Reliability analysis) is an in-
termediate language for performance and reliability analysis of component-based
systems [GMS05]. It has been developed mainly at the Università di Roma and the
Politecnico di Milano. The focus of KLAPER is not to design a component-based
system, but to be an intermediate language for transforming a component-based
design into a language used for performance and reliability analysis. The main idea
of KLAPER is that component-based systems are designed using languages that
are well suited for software design, but that for system analysis other languages
are to be preferred. With KLAPER, the transformation from the different design
languages to the different analysis languages is simplified, as it is not necessary to
find transformation rules from each design language to each analysis language, but
just to find transformation rules from each design language to KLAPER and from
KLAPER to each analysis language, as shown in figure 2.12. KLAPER is not an
ADL like the other languages presented here, but for representing the architecture
designed in an ADL, KLAPER has to provide concepts that are common to all
ADLs. With this focus, KLAPER should provide all features of component models
considered necessary by its authors.

Figure 2.12: KLAPER is an intermediate language for transforming design lan-
guages to analysis languages. The component-based design languages
on the left can be transformed (semi-)automatically into a KLAPER
representation. Afterwards, the KLAPER model can be transformed
(semi)automatically into a representation in the analysis language,
which can then be used to analyse the designed system. [GMS05]

KLAPER is a MOF-based language, just as SOFA 2 presented in chapter 2.4.
Thus KLAPER can be expressed with diagrams similar to UML class diagrams or
e.g. in XML. In KLAPER a system consists of interacting resources, with resources
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providing and possibly requiring services. Resources are not limited to software com-
ponents but may also represent physical resources like processors or communication
links, which enables the language to represent analysable models.

2.7.1 Component Definition and Assembly

A component in KLAPER is defined by a resource offering a service. The implemen-
tation of the service is described with a behaviour. Resources represent logical (soft-
ware components) or physical units (processors, communication links, . . . ). They
have attributes, including a name, a type and performance properties. The services
offered by a resource have a name and formal parameters with which they can be
invoked. Thus a service represents one operation. The behavior resulting from the
implementation of the service is represented by a control flow of steps, including a
start, an end, control elements like forks and joins, as well as internal activities and
service calls, as to be seen in figure 2.13. A Behaviour is thus a sequence of Steps
with a defined start and a defined end. InternalActivities are steps of computation
of the resource implementing the service, while ServiceCalls are calls to required
services. The complete meta model of KLAPER is depicted in figure 2.13.
When all necessary components are defined and the system is to be assembled,

service calls are associated with the corresponding service definitions. As different
instances of one component type may exist, the direct association allows for a unique
distinction between single component instances.
Figure 2.14 shows an example component in KLAPER. The resource aSortComp

represents a component of the type sortComp. The component offers a service called
sort, which can be called with the two parameters lstin and listout, which are both
integer parameters.
The service is implemented by a short control flow, which consists of just one

service call to a service called process of a component with the type cpu. The
service takes one parameter, which depends on a value called list. This is actually
the value of lstin, a formal parameter of the service sort.
As can be seen in the example above, KLAPER also has the capability to define

performance and reliability attributes for resources, services, and behaviour. This
fact is not considered here, as this thesis focuses on the functional aspects of the
component model.

2.8 Comparison Summary

After inspecting the given component models, the features provided by the languages
can be categorised into eight areas, which are described in more detail in the following
sections. Table 2.1 gives an overview of the comparison results.

2.8.1 Provided Interfaces

As large systems in CBSE are divided into smaller components, each component
offers services that may contribute to resulting systems. Since single components
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Figure 2.13: In the KLAPER meta model, a Resource is a logical (software compo-
nent) or physical (processor, communication link, . . . ) unit which offers
Services. Services are implemented by one or more Behaviors, which
in turn possibly require services. The attributes of the entities are not
included in this view. [GMS05]



2 Formal Component Specifications 31

Figure 2.14: The component aSortComp in this example is defined by its Resource,
an offered Service and its corresponding Behaviour. The service is
realised by a three internal steps, including start, stop and a service call
to a resource of the type cpu, which has to be defined and assembled
later. [GMS05]

Features of the inspected ADLs

Provided Interfaces
√ √ √ √ √ √

Dependencies
√ √ √ √ √ √

Composition
√ √ √ √ √

x
Connectors

√ √ √
x

√
x

Communication Constraints
√ √

x
√ √ √

Instantiation x
√ √ √ √

x
Assembly

√ √ √ √ √ √
Quality attributes

√
x x x x

√

ADL Palladio Π SOFA 2 UML UniCon KLAPER

Table 2.1: Comparison summary of ADL features
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may be used in different contexts, which are possibly unknown during development
of the component, the interfaces must be described thoroughly. Each of the con-
sidered languages provides means for describing the provided interfaces, though at
different levels of detail. In Π the export is described in three views, including con-
currency constraints and exported types, while in Palladio the description is limited
to references to Java interfaces and a communication type.

2.8.2 Dependencies

The usage of services provided by other components introduces dependencies be-
tween the components of a system. For dependency descriptions to be context-
independent, they must precisely define the functional requirements that can be
satisfied by different components. The components describe functional dependen-
cies in all considered languages, though also varying in the degree of detail. In SOFA
2 e.g., only interface names are used to describe required services. In contrast, Π
expressed the import in three views, just as its export.

2.8.3 Composition

When systems become larger, the subsystems in focus also grow in size. The concept
of component composition simplifies to keep an overview of the complete system,
by introducing abstraction layers. All ADLs except KLAPER consider composite
components for this purpose. I.e., a set of interconnected components can be de-
fined as one component with provided and required services. The context does not
need to distinguish whether a component is primitive or composite. This allows for
developing systems of large building blocks. In all languages the provided services
of a composite component are delegated to their subcomponents, and its unbound
required services are delegated to the composite.

2.8.4 Connectors

Different interconnection types between components exist. Communication may e.g.
be event-based or use method invocation. Connectors may become even more com-
plex, when they should ensure quality attributes like security [Szy02, chapter 21.1.2].
Many of the examined languages do not cover the possible complexity of connectors
and the resulting effects, including delays and failure probabilities. In Palladio, Π,
UML, and KLAPER the only interaction mechanism is method invocation. In SOFA
2 different interaction mechanisms can be applied, but are limited to a predefined
set. The component model in UniCon allows for arbitrary connector implementa-
tions, but the language implementation is limited to Unix-Pipes. However, complex
communication mechanisms can be represented by a connector component, i.e. a
component with the functionality of a connector. The communicating components
are then not connected to each other, but both are connected with a direct reference
to the connector component, as depicted in figure 2.15.
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Source Sink

SecureConnector

Figure 2.15: A connector component can be used to substitute complex connectors.
The component SecureConnector is a component that is specifically
designed to securely transport the signals from the component Source
to the component Sink over an insecure network.

2.8.5 Communication Constraints

In an open environment, each component may e.g. call each operation of its required
service, or each event is allowed. Communication is instead often constrained in
terms of call sequences or concurrency. In Π the communication may be constrained
using the concurrency view. The constraints include preconditions for operation calls
as well as a sequence of possibly concurrent calls using path expressions. UniCon
predefines a set of communication constraints for the roles of a protocol. In KLAPER
the permitted communication is thoroughly defined using behavioural models. In
Palladio and UML communication constraints are mentioned but not defined. SOFA
2 does not consider the interaction at all.

2.8.6 Instantiation

Multiple instances of a component allow for easily reusing components at run time.
If an instance of a component fails, components requiring other instances of this
component are not affected. For this reason, SOFA 2 defines a system architecture
which contains named component instances. Connections are then defined between
the component instances. Π, UML, and UniCon use a similar approach. Compo-
nent instances are not considered in KLAPER and Palladio. In these languages a
component must be copied and renamed to simulate an instantiation.

2.8.7 Assembly

In all inspected languages the system is defined in some sort of assembly. At de-
velopment time, components are defined and implemented independently from their
context, while at a separate assembly time the components are interconnected to
subsystems and systems. At assembly time, Π, SOFA 2, UML, and UniCon use a
top level composite component for instantiating the components and interconnecting
them. In Palladio a separate system diagram is created, which represents the top
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view of the system. While it is described in a separate diagram, it is essentially also
a composite component. KLAPER does not provide composite components. Thus
an assembly in KLAPER includes all components and their referenced entities in a
flat structure, which might be an issue in large architectures.

2.8.8 Quality Attributes

Requirements specifications for large software systems usually also include quality
requirements, like performance requirements. For evaluating quality issues at design
time, the language must consider these requirements besides the structural design.
As performance prediction is one of the goals for Palladio, these quality attributes
are easy to specify and allow for evaluating the architecture for performance issues
before it is built. In KLAPER the architecture can be attributed with performance
and reliability parameters that can be used for analysis after the transformation to
applicable analysis models. This functionality cannot be taken for granted. The
other examined languages do not provide features for quality requirements.
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3 OSGi Service Platform

The OSGi Service Platform (formerly an abbreviation of “Open Services Gateway
initiative”, now just OSGi) is a practice-driven component framework for the Java
language, which was initially introduced as “Java Specification Request (JSR) 291:
Dynamic Component Support for Java SE“ [Sun07]. Its Core Specification [OSG09a]
describes the framework and the component model. The Service Compendium
[OSG09b] describes a set of standard components for the framework. The cur-
rent version of the specification is 4.2. Many implementations of the specification
exist. Equinox e.g. is a wide-spread open source implementation of the framework,
as well as Apache Felix, both aiming to implement the specification for universal
use. Other commercial implementations exist, like the ProSyst mBedded Server,
which has extensions (i.e. pre-defined bundles) for smart home, mobile phone, and
telematics applications [Pro10].
The goal of the OSGi Service Platform is to provide a middleware for dynamic

software architectures, since the Java language and platform do not provide any
component concept. For this reason, the framework supports the management of
so-called bundles, which are technically Java Archives (JAR) containing the compiled
classes and corresponding resources. The bundles are configured in the JAR config-
uration file (MANIFEST.MF) using name-value pairs. Bundle meta data include the
unique symbolic bundle name and version as well as dependencies to other bundles
or functional dependencies. The framework is responsible for loading the bundles,
resolving dependencies, and managing the bundle life cycle, as the bundles may be
installed and removed at run time.
To achieve its goals, the framework is divided into five layers:

• Module Layer

• Life Cycle Layer

• Service Layer

• Security Layer

• Actual Services

The bundle uses the Module, Life Cycle and Service Layer to provide the actual
services, and the bundle communication is constrained by the Security Layer. The
architecture is depicted in figure 3.1.

3.1 Module Layer

The Module Layer adds a more abstract view on applications and packages to Java
by introducing a modularisation model, the so-called bundles. Bundles are uniquely



3 OSGi Service Platform 36

Figure 3.1: Due to the Java Platform, OSGi is independent from hardware and oper-
ating systems. The execution environment is the Java runtime platform.
Bundles use the Module, Life Cycle and Service Layer to provide the
actual services. The Security Layer can be used to constraint the per-
missions of bundle communication. [OSG09a]

identified by their symbolic name and their version. Each bundle may name pack-
ages and classes to be accessible by other bundles, while the rest of the classes is
hidden. Bundles requiring functionality from other bundles import packages defined
by the package name, which may be exported by an arbitrary bundle. Alternatively,
a bundle can declare a dependency to a specific bundle, by referencing the symbolic
name of the required bundle. This results in an import of all its exported packages.
Resolving dependencies is automatically done by the framework. The automatic re-
solving process can be controlled descriptively, by naming preferred versions, vendors
or bundles to be bound.
The module configuration properties in the JAR configuration file include the

following:

• Activator
Bundles have a life cycle, which is shown in figure 3.2. When a bundle is
started, the activator is executed. The activator is a class that inherits from
the OSGi specific class BundleActivator. The activator has methods which are
executed when the bundle is started or stopped, and can store a reference to
the bundle’s context that the bundle’s internals may use.

• Bundle-Name
The human-readable name of the bundle.

• Bundle-SymbolicName
The unique ID of the bundle.
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• Bundle-Version
Bundles may exist in different versions, even in parallel at run time. The frame-
work resolves dependencies between components, which may rely on specific
versions or version ranges. With this mechanism, bundles can be updated at
run time without affecting existing associations, as both versions can run in
parallel.

• Bundle-RequiredExecutionEnvironment
The bundle may provide a list of environments it requires to work. These
possible environments include the complete Java Standard Edition Runtime
Environment in version 6 or special execution environments for limited devices.
This is essentially a dependency for a specified context.

• Export-Package
Packages within the bundle that are to be visible to other bundles.

• Import-Package
Packages to be imported by other bundles.

• Require-Bundle
Require-Bundle declares a direct dependency for another bundle. All exported
packages of the required bundle are imported.

Example 3.1 shows bundle meta data declaring a bundle with the symbolic name
org.example.persistence in the version 1.0.0.GA. It requires the Java Standard Edi-
tion in the version 6 as environment and declares a class as activator class. The
bundle imports the package org.osgi.framework, which is provided by the platform,
in version 1.3.0. The described bundle also exports a package, giving its version
number. The version number is an optional parameter.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Persistence Example

Bundle-SymbolicName: org.example.persistence

Bundle-Version: 1.0.0.GA

Bundle-RequiredExecutionEnvironment: JavaSE-1.6

Bundle-Activator: org.example.persistency.Activator

Import-Package: org.osgi.framework;version="1.3.0"

Export-Package: org.example.persistency.export;version="1.0"

Listing 3.1: A bundle description in OSGi

3.2 Life Cycle Layer

The Life Cycle Layer defines an application programming interface (API) which
allows to install, start, update, stop, and uninstall bundles at run time. As the
Life Cycle Layer relies on the existence of bundles, it can not be used without the
Module Layer. Figure 3.2 shows the life cycle of bundles.
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Figure 3.2: The life cycle of a bundle begins with its installation. If all depen-
dencies can be resolved, the bundle is ready to be started. When the
bundle is stopped again, it returns to the state resolved, where it can
be restarted or uninstalled. The uninstallation ends the life cycle of a
bundle. [OSG09a]
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The life cycle of a bundle begins with its installation in the framework, which
causes the bundle’s state to switch to Installed. In this state, the bundle may be
uninstalled, refreshed or updated. When a bundle is refreshed, it is unresolved
and the framework tries to resolve the bundle again. An update can be used to
replace a bundle with a newer version. The framework automatically resolves all the
dependencies of a bundle. Thus if a bundle can be resolved, its state automatically
changes to Resolved. In this state, the bundle may still be refreshed, updated and
uninstalled as in the state Installed. Additionally, the bundle can be started, which
changes the state to Starting and triggers a call to the bundle’s activator class. The
state is automatically changed to Active when the bundle has finished starting. If
the bundle is advised to start lazily (via the Bundle-ActivationPolicy property),
it might also keep the state Starting until one of its classes is requested by other
bundles. When the bundle is in the state Active, it is running and accessible to
the other bundles. When the bundle is stopped, the state switches to Stopping and
triggers a call to the activator class to stop the bundle. The state then eventually
switches to Resolved again. When a bundle is uninstalled, its life cycle ends.

3.3 Service Layer

The Service Layer adds a publish-find-bind model to the OSGi framework. A service
in OSGi is a Java object implementing an interface that is published in a service
registry under the name of the interface. Bundles may request services from the reg-
istry using interface names, to access the object implementing the interface. Bundles
may also be notified when the registration state of the desired or observed interface
changes in the registry.
Services in OSGi are published to the service registry by using the method reg-

isterService(String, Object, Dictionary) of the BundleContext object, which is pro-
vided to each bundle via the activator. The method takes an interface name, the
object to register and a dictionary as parameters, and ensures that the object is
actually an instance of the named interface. The dictionary represents properties of
the service as key-value pairs. These properties can be used by bundles searching for
services for filtering the results, by e.g. searching all services registered under the
interface name org.example.services.TransferService that have the value “ACME”
for the property key vendor.id. The method returns a ServiceRegistration object,
which can be used to unregister the service with the corresponding method.
For accessing a service object of the registry, a bundle has to receive a ServiceRef-

erence from the OSGi runtime first. The ServiceReference contains the meta data
of the service including its properties. To obtain a ServiceReference, the bun-
dle needs to call the operation getServiceReference(String) or getServiceRef-
erences(String, String). The first returns a single ServiceReference of the desired
interface name given as parameter. If more than one service object exists, the frame-
work returns the service with the highest value in the property service.ranking or, if
that does not lead to one result, the service that was registered first. The latter oper-
ation returns an array of all ServiceReferences to services implementing the desired
interface. The second parameter is a string for filtering the results. The syntax of the
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filter string is based on the Lightweight Directory Access Protocol (LDAP) search
filters, which are described in [How96]. For receiving the actual service object of
a ServiceReference, the bundle has to call the method getService(ServiceReference)
of the BundleContext. Alternatively to the simple service objects, a service factory
can be published in the service registry. A service factory is an object of a class im-
plementing the ServiceFactory interface. A service factory will return a new service
object to each distinct requesting bundle.
Besides registering and receiving service objects programmatically, the service’s

provision and requirement can also be stated declaratively. The OSGi Service Com-
pendium defines Declarative Services for this intention. As Declarative Services use
the functionality of the Service Layer to register and bind the declared services, they
do not extend the semantics of services and will thus not be covered here.

3.4 Security Layer

The Security Layer provides the security concept for OSGi bundles and is based
on the Java 2 security model. Security configurations can be used to constrain the
execution permissions of bundles on class level. As security aspects are not in the
scope of this thesis, details on the Security Layer will be omitted here.

3.5 Comparison of Formal Component Specifications

and OSGi

After inspecting the OSGi framework, its component model will now be compared to
the component models examined in chapter 2. The areas of model features identified
for the formal component specifications will be related to the component model of
OSGi.

3.5.1 Provided Interfaces

The bundles are the elements of modularisation in OSGi. Bundles may provide
functionality to other bundles. The package export mechanism provides means to
hide implementation internals, as was proposed by Parnas in [Par72]. Services add
another mechanism for information hiding by offering an interface name and a refer-
ence to the corresponding service object. In this case, functionality can be provided
without the need to reveal internal implementation details. However, the content
of the interface is not shared in the registry, but only the interface name – which is
not necessarily unique – and some service properties.

3.5.2 Dependencies

Dependencies between bundles can be specified in three ways with OSGi:

• By referencing the symbolic name of the required bundle, all exported packages
of a bundle are available in the referencing bundle.
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• When required packages are referenced, the framework automatically resolves
the dependencies, and accesses the packages, if a provider is available.

• When a required service is referenced with its interface name, the service is
requested from the service registry.

All references are resolved at run time when the bundles are started, and errors will
occur when dependencies cannot be satisfied.
For utilizing data types that are used by a service, each bundle referencing this

service has to define a reference to the bundle providing that data type. This tight
integration contradicts the specifications of formal component models.
For using a service object, the interface describing the service must be available

to both, the providing and the requiring bundle. Besides keeping a copy of the
interface in both, the consumer bundle (which requires the service) and the provider
bundle (which provides the service), two approaches exist for making the interface
available to both bundles. The approaches are depicted in figure 3.3. At the left hand
side of the figure the interface is contained in the provider bundle. The consumer
bundle has a dependency to the provider bundle to access the interface definition
and the corresponding types. At the right hand side of the figure, a shared bundle
contains the interface and types. The provider and the consumer need a dependency
to the shared bundle to access the interface definition, thus the consumer and the
provider do not need to know each other. This approach has the advantage that the
consumer bundle can be developed without knowledge about the service provider,
and thus without a static dependency. However, the service interface still needs
to be defined before the consumer can be developed. Changes in the interface will
require a recompilation of all consumers.

Consumer Bundle Consumer Bundle

Provider Bundle

InterfaceShared Bundle

InterfaceProvider Bundle

Reference
Use

Use

Reference

Reference

Figure 3.3: At the left hand side, the interface of the provided service is included
in the provider bundle. The bundle consuming the service thus has a
direct dependency on the provider bundle. At the right hand side, a
shared bundle contains the service interface. The provider and the con-
sumer bundle have dependencies to the shared bundle, thus the consumer
can use the service without knowledge of the bundle implementing the
service. [MBG10]

Formal component models address this feature at different levels of detail. In
Palladio, SOFA 2, and UML the components communicate using shared interfaces.
The interfaces are not part of any component, but separate entities. The problem
with shared types is not addressed by these languages. In Π each component is
completely context-independent. All imported and exported types and behaviour
are defined locally in the components. I.e., the components have no static references
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to their context. UniCon addresses the problem similar to Π. In both languages,
the connectors handle the conversion between required provided services and types.
UniCon relies on predefined communication mechanisms in this case, while in Π
conversion is defined by the developer.

3.5.3 Composition

While in formal component specifications composition is one of the key concepts, the
concept cannot be found in the OSGi component model. Bundles are interconnected
within a flat structure. No delegation of provisions or requirements to a composite
can be defined.

3.5.4 Connectors

In contrast to most of the examined formal component specifications, OSGi does
not define connectors as first class entities with possibly functional aspects. Thus
complex interaction mechanisms like secure connections can hardly be considered.
In OSGi, due to package access, several interaction mechanisms like e.g. shared
memory can be used programmatically. The component concept of OSGi is focused
on method invocation.

3.5.5 Communication Constraints

Most of the formal component specifications consider communication constraints in
some way. In Π, for example, the permitted interaction of an exported type is defined
with path expressions, preconditions, as well as usage requirements for imported
types. The component model in OSGi does not consider interaction constraints in
such detail. While the Security Layer allows for communication constraints to be
defined, the constraints do not refer to the service’s state but to method call origins.
These constraints are given statically and have to be checked programmatically.
Thus it is impossible to define permitted call sequences or concurrency constraints
for method calls but programmatically.

3.5.6 Instantiation

Component instances can be called a key concept for reuse in SOFA 2, Π, UML,
and UniCon. In OSGi, components must be distinct regarding the bundles’ symbolic
name and version. The installed bundles do not have instance names, and a bundle
with the same symbolic name and version cannot be installed twice at the same
time. For adding a second instance of a bundle, the bundle would have to be copied
and the symbolic name or the version number would have to be changed. Although
with this approach several instances of a bundle could be deployed, this could be
considered confusing.
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3.5.7 Assembly

Each examined formal component specification provides some sort of assembly. In
Palladio a separate diagram is created for the assembly, and for the most languages
an assembly is a special composite component, in which the interconnections can be
defined manually.
As OSGi does not support component composition, this approach cannot be valid

for the OSGi component model. A separate assembly time does not exist in OSGi.
The bundles and services are interconnected automatically by the framework at run
time instead. The connections cannot be explicitly defined, but just influenced by
required and provided properties in the bundles’ and services’ meta data.

3.5.8 Quality Attributes

Some formal component specifications consider quality requirements or even provide
tools for system simulation and analysis. In Palladio e.g. the components and other
entities can be attributed with resource demands, and a simulation system is created
in a deployment diagram. With this setup, an architecture can be simulated and
analysed before it is implemented. Since the OSGi component model does not
provide attributes for quality requirements, such functionality is not available.

3.5.9 Comparison Summary

The comparison between the core features of formal component models and the
component model of OSGi shows great differences between the concepts. In formal
component models, loosely coupled, self-describing, and hierarchically structured
components communicate using connectors. In OSGi separate bundles are based on
each other, each extending or using the functionality of another, while being tightly
coupled to its dependency. Based on this information, a change to the OSGi Service
Platform will now be proposed that aims at representing the concepts of formal
component models in the practice-driven framework.
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4 A Formal Component Model for

OSGi

As shown in chapter 3, the OSGi component model strongly differs from the formal
component specifications discussed in chapter 2. The OSGi component model lacks
some essential features of formal component models. The main issues of components
in OSGi is the tight coupling and the lack of concept for composite components. In
this chapter, a new component model for OSGi will be proposed. The proposed
model aims at implementing the features of formal component specifications in the
practice-driven OSGi Service Platform. These features are implemented in three
concepts of the proposed model: The provided interfaces and dependencies will be
introduced in the component specification. These interfaces are annotated with
behavioural specifications, representing the feature for communication constraints.
The concept of connectors is represented as a first class entity in the model. A system
assembly in the proposed model is a composite component. Composite components
consist of instantiated subcomponents and their interconnection. The feature of
providing information about quality attributes of an architecture is not addressed
by the proposed model.
The model’s concepts are specified first in section 4.1, before the reference imple-

mentation is described in section 4.2. Finally, the chapter proceeds by describing
the tool support for the model’s implementation in section 4.3.

4.1 Model Concepts

In this section the concepts of the proposed model are presented. The first class
entities in the model are components and connectors. Components may be primitive
and composite, introducing hierarchical architectures in the OSGi Service Platform.

4.1.1 Components

Components are first class entities in the proposed model. They have a name and
interfaces for interconnection with their context. The interface can also have a
behavioural description.

Primitive Components and Interfaces

Primitive components are bundles within the OSGi Service Platform with additional
meta data. They have a name and provide or require services and types. Services are
interfaces that are implemented by a single class within the providing component’s
bundle. Instances of this class are provided to the component’s context. These



4 A Formal Component Model for OSGi 45

services may use complex data types as parameters or return types that are not
available in the platform, and which have to be provided to the context as well.
Types are also represented by interfaces. In contrast to services, they are not neces-
sarily implemented by a single class, but may have multiple implementations within
one component.
Services and types are represented by Java interfaces within the providing or

requiring bundle. A component configuration file is used to declare component
meta data. For primitive components, these meta data are declarations of provided,
required, and common parameter interfaces and their attributes.
The realization of a provided service is a class implementing the corresponding

Java interface. Provided services may be singletons. I.e., each time the context
requests an instance of the service, the same instance is returned, regardless of
the requests origin. If the service is not declared a singleton, each request will be
answered with a new instance of the service. For generating a new instance of the
service, the default constructor is used. As some classes do not allow instantiation
with this constructor, an instantiation method can be stated, which will be called
instead. The instantiation method thus has to be a static method and return an
instance of the provided interface. The descriptors of provided types just contain
the type’s interface.
The required services and types of a component are also Java interfaces within

the bundle. The interface is declared to be required in the component configuration
file. Required services are not implemented by a class within the bundle. Objects
of classes implementing a required interface are bound to a binding class instead,
which acts as a container for the required services. The required service declaration
thus contains a binding class and a method to be called for binding. The binding
method will be invoked with an instance of the required service as parameter. An
unbinding method of the binding class can also be stated, which will be invoked when
a required service should be removed. Likewise the classes implementing a provided
service, the binding classes may be singletons and an instantiation method may be
declared. The declarations of required types do not contain a binding class and a
binding method, for they are not bound by the runtime. As they are instantiated
within the functionality of the component instead of the framework, they also do
not define an instantiation method and the singleton attribute.
The third category of component interfaces are common parameters. The com-

mon parameter semantics is based on the concept in Π. A common parameter is
a required service or type that is also provided within one component. Figure 4.1
visualizes the concept. A component requiring a specific interface may provide the
requirement to its context. The component is then called to be parameterized with
this required interface. Different instances of the component may have different
common parameters, and thus describe different functionalities. A common param-
eter service is bound to a component like a required service. Additionally to the
attributes of required services, a method of the binding class must be defined that
returns the instance of the common parameter service. An instance of the common
parameter is bound to a binding class. As the same instance has to be returned on
an invocation of the method providing the common parameter service, the binding
class for a common parameter is always defined to be a singleton.
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Provided interfaces

List

Required interfaces

Common
Parameters

Provided interfaces

List
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Parameters

Provided interfaces
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Parameters
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Parameters

Figure 4.1: The client component requires two list services. Each list service uses
another provided interface as a common parameter. The component List
at the left side uses the interfaces provided by the component Car. The
component List at the right side uses the interfaces of the component
Person. The client has access to two lists, a list of cars and a list of
people.
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The provided and required services and types are defined locally in the compo-
nent’s bundle. The component is thus an independently compilable and deployable
unit, because no dependencies to other components or the system are introduced at
class level.
Listing 4.1 shows an exemplary component configuration file. The configuration

file defines a set of provided and required services and types, as well as common
parameters.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<msc:component xmlns:msc="msc.proposal.system.entities">

<provides

interface="org.example.IAuthentication"

implClass="org.example.impl.AuthenticationImpl"

singleton="true" />

<provides type="org.example.IUser" />

<requires

interface="org.example.ILogin"

bindClass="org.example.impl.Client"

bindMethod="bindLogin"

singleton="true" />

<requires type="org.example.ISession" />

<commonparameter

interface="org.example.ILogin"

bindClass="org.example.impl.Client"

bindMethod="bindLogin"

providesmethod="getLogin"

instantiationMethod="getInstance" />

<commonparameter type="org.example.ISession" />

</msc:component>

Listing 4.1: Component specification

Behavioural Specification for Interfaces

Additionally to the attributes stated in chapter 4.1.1, all component interfaces may
also define a behavioural specification. The proposed component model uses inter-
face automata [dAH01] for describing permitted behaviour.

Interface Automata An interface automaton is essentially a finite state machine
with in- and output actions, where each input defines a received method call and each
output defines an outgoing method call. This mechanism is used to describe how a
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component implementing this interface can be called by its context and how it makes
calls to external components. Two interface automata interact by synchronizing
their behaviour with input and output actions. I.e. when two automata share the
same action names, the input and output steps with the shared action name can only
fire synchronously. Interface automata use an optimistic approach to composition.
I.e., two components are compatible if their respective interface automata share at
least one possible path.
An interface automaton P is a six-tuple P = 〈VP , V

init
P , AI

P , A
O
P , A

H
P , TP 〉.

• VP is a set of states.

• V init
P ⊆ VP is a set of initial states, with at most one state. P is called empty

if V init
P = ∅.

• AI
P , A

O
P and AH

P are disjoint sets of input, output and internal (hidden) actions.
AP = AI

P ∩AO
P ∩ AH

P is the set of all actions.

• TP ⊆ VP × AP × VP is a set of steps, which move the automaton from one
state to another when the action is performed.

As an example, figure 4.2 shows the graphical representation of an interface au-
tomaton User. This interface automaton defines two input actions ok and fail, as
well as one output action msg. The automaton consists of two states 0 and 1, of
which 0 is the initial state. When the method msg is called by the component behind
this interface, the automaton moves to the state 1. In this state the automaton just
accepts a method call to ok. When this method is called by an external component,
the automaton is in state 0.

Figure 4.2: The interface automaton User has two states, 0 and 1, with 0 being the
initial state. The transitions are annotated with the outgoing method
call msg and the incoming method call ok. The incoming action fail is
defined but can never be handled by the automaton. The context of the
component has to make sure this method will never be called. [dAH01]
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Two interface automata can be composable and compatible. The composition
of two interface automata can be computed with algorithms explained in [dAH01].
The compatibility of interface automata is defined in [dAH01]:

“Two interface automata P and Q are compatible iff (a) they are
composable and (b) their composition is nonempty.”

Two interface automata are composable when they don’t share input or output
actions, and their internal actions do not share their name with any action of the
opposite interface automaton. This is necessary, because two interface automata
synchronize on actions with similar names. For calculating the composition of two
interface automata, the product has to be calculated first. The product of two
automata P ⊗Q is defined as follows:

• VP⊗Q = VP × VQ

• V init
P⊗Q = V init

P × V init
Q

• V I
P⊗Q = (AI

P ∪AI
Q) \ shared(P,Q)

• V O
P⊗Q = (AO

P ∪AO
Q) \ shared(P,Q)

• V H
P⊗Q = AH

P ∪ AH
Q ∪ shared(P,Q)

• shared(P,Q) = (AI
P ∩AO

Q)∪ (AO
P ∩AI

Q) are the actions shared by the interface
automata

TP⊗Q is defined as

TP⊗Q ={((v, u), a, (v′, u))|(v, a, v′)} ∈ TP ∧ a /∈ shared(P,Q) ∧ u ∈ VQ}
∪{((v, u), a, (v, u′))|(u, a, u′)} ∈ TQ ∧ a /∈ shared(P,Q) ∧ u ∈ VP}

∪{((v, u), a,(v′, u′))|(v, a, v′) ∈ TP ∧ (u, a, u′) ∈ TQ ∧ a ∈ shared(P,Q) ∧ u ∈ VP}.

If two interface automata are compatible, they have at least one shared path,
which is defined by the composition. The composition of two interface automata is
a closed operation, i.e. the composition of interface automata is also an interface
automaton. Thus arbitrary numbers of interface automata can be composed. The
composition of interface automata is also transitive, so the order of composing the
automata is irrelevant.

Interface Automata in the Proposed Component Model The interface au-
tomata approach assumes shared interfaces which are used as required and provided
interfaces. The proposed component model uses formal required as well as provided
interfaces instead, which are interconnected with connectors. Thus the involved
components do not necessarily use the same method names for communication. For
this reason the interface automata approach was adapted to this situation as follows.
Provided interfaces only accept method calls. They are not used to make method

calls to external components, and have no output actions. Thus AO
P is empty. The

actions are annotated with the signatures of methods in the interface. An example
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of an interface automaton for a provided interface is shown in figure 4.3. The
interface has four methods, init() and deinit(), getName(), and getLocation(). The
method init has to be called before any other method. The methods getName()
and getLocation() may then be called repeatedly, before the method deinit may be
called.

0
1

init()?

deinit()?

init() deinit()

getName()?

getLocation()?

getName() getLocation()

Figure 4.3: Interface automaton for a provided interface

Required interfaces just define outgoing method calls instead. They are not called
by external components. Thus AI

P is empty. Output actions are also annotated
with method signatures. The interface automaton of a required interface is shown
in figure 4.4. The interface has four methods, create(), destroy(), getPOIName(),
and getGeoLocation(). The interface is to be used similarly to the interface in figure
4.3.

0
1

create()!

destroy()!

create() destroy()

getPOIName()!

getGeoLocation()!

getPOIName() getGeoLocation()

Figure 4.4: Interface automaton for a required interface

Interface automata for common parameter interfaces forward accepted method
calls to another component. A common parameter interface needs an interface au-
tomaton with input actions, but without output actions, for checking the compat-
ibility of a provided interface with the common parameter interface. For checking
the compatibility of the common parameter interface with a required interface, an
automaton with output actions is needed. Thus a common parameter interface
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needs to provide two interface automata. These interface automata just differ in
the definition of actions as input or output actions. In the example in figure 4.5 the
common parameter interface has four methods which are related to the methods in
the required and provided interfaces described in the examples above.

0
1

init()?

deinit()?

init() deinit()

getName()?

getLocation()?

getName() getLocation()

Provided interface

PointOfInterest
Common Parameter

Car

Required interface

0
1

reg()!

unreg()!

reg() unreg()

getHouse
Name()!

getGPSData()!

getHouse
Name()

getGPSData()

Operah house

0
1

create()?

destroy()?

getPOIName()?

getGeoLocation()?

create() destroy() getPOIName() getGeoLocation()

getGeoLocation()

0
1

create()!

destroy()!

create() destroy()

getPOIName()!

getGeoLocation()!

getPOIName()

Figure 4.5: On the right side interface automata for a required and a provided inter-
face are shown. The connection in this example is defined over a common
parameter of a third component, which is shown on the left side. For
checking the compatibility, the common parameter has to provide two
interface automata which are highly similar. One defines the actions as
input actions, and one defines the actions as output actions.

The original approach of interface automata requires action names to match for
synchronisation of automata. This is expressed in the definition for shared actions
shared(P,Q) and for the actions of a product. As the proposed component model
uses formal required and provided interfaces, these names do not necessarily match.
For this reason the interface automata must be adapted for the product operation. A
connector definition is needed that maps the methods of one interface to the methods
of the other interface, and the actions of the involved automata have to be redefined.
The connectors described in section 4.1.2 provide the necessary information. Instead
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of computing the product of two interface automata P and Q, the automata P ′ and
Q′ are used. The action names (i.e. the method signatures) of P ′ and Q′ are
concatenated. The new action names represent the method mapping defined in the
connector.
Figure 4.6 shows an example, how the automata are adapted. The interface

automata are mapped with the connector information. The resulting adapted au-
tomata are used for computing the product. Since only the input variables of the
interface automata have been changed, all algorithms for computing the composition
of interface automata can be reused.

getLocation()-
getGeoLocation()

0
1

init()-create();

deinit()-
destroy();

getName()-
getPOIName();

getLocation()-
getGeoLocation();

Provided
Interface

Required
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PointOfInterest
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PointOfInterest’

Product(Car’, PointOfInterest’)
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getGeoLocation()!

getPOIName() getGeoLocation()

Figure 4.6: The upper and the lower left interface automata show the original au-
tomata P and Q. the upper and the lower right automata P ′ and Q′ are
adapted with connector information. The bottom interface automata is
the product P ′ ⊗Q′.
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Component Model Integration In the proposed component model, component
interfaces may be attributed with a behavioural specification in terms of interface
automata at development time. When the components are interconnected at as-
sembly time, the interface automata’s compliance can be checked manually, to find
compatible interfaces and components. The correctness of the implementation re-
garding the automata is not monitored at run time.
Interface automata are defined in an own file for each interface declaration in the

component descriptor. Listing 4.2 shows how to add the definition of an interface
automaton to a provided interface.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<msc:component xmlns:msc="msc.proposal.system.entities">

<provides interface="user.A" implClass="user.AImpl"

behaviouralSpecification="MSC-OPT/A.ia.xml"/>

</msc:component>

Listing 4.2: Declaration of a behavioural specification in the component descriptor

The file MSC-OPT/A.ia.xml defines the interface automaton and is shown in listing
4.3. The automaton consists of three states, 0, 1, and 2 of which 0 is the initial state.
Three output actions init(), add(java.lang.String) and deinit() reflect methods of the
corresponding interface. The steps define that the method init() has to be called
first, before the method add(java.lang.String) may be called. After add, a call to
the method deinit() is expected, before the automaton is in state 0 again.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns2:interfaceautomata xmlns:ns2="msc.proposal.system.interfaceautomata.

entities">

<states name="0" initial="true" />

<states name="1" initial="false" />

<states name="2" initial="false" />

<actions type="output" name="init()" />

<actions type="output" name="add(java.lang.String)" />

<actions type="output" name="deinit()" />

<steps to="1" from="0" action="init()" />

<steps to="2" from="1" action="add(java.lang.String)" />

<steps to="0" from="2" action="deinit()" />

</ns2:interfaceautomata>

Listing 4.3: An interface automaton defined in XML

The definition of common parameters requires an automaton for the provided and
the required view. An example of a behavioural description for common parameters
is shown in listing 4.4.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<msc:component xmlns:msc="msc.proposal.system.entities">

<provides interface="user.CP" implClass="user.CPImpl"

behaviouralSpecificationProviding="MSC-OPT/CPProv.ia.xml"
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behaviouralSpecificationRequiring="MSC-OPT/CPReq.ia.xml"/>

</msc:component>

Listing 4.4: Declaration of behavioural specifications for a common parameter

4.1.2 Connectors

As described above, components define their required and provided interfaces locally.
No shared interfaces can be used between two components, as the interface one
component uses is not known to the other component. Hence the interfaces might
have different names and method definitions. For interconnecting a required with a
provided interface, these interfaces and their methods need to be mapped. For the
required and provided services to be bound at assembly time, a connector must be
introduced.
The connectors are first class entities in the proposed component model. For map-

ping interfaces and methods, information about required and provided interfaces of
the components to be interconnected and their methods is needed. When a method
of a required service or type is invoked, the connector maps the call to an instance
of the provided counterpart. The mapping is transparent to the involved compo-
nents. The mapping of formally described component interfaces and their methods
allow for context-independent components. The components do not have to share
interfaces for communication, but define their requirements locally. Connectors can
be extended to have arbitrary functionality. An extension of the standard connector
has been implemented and is described in chapter 4.2.2.
The mapping information for connectors is given as key-value pairs in a prop-

erties file. In the exemplary mapping file shown in listing 4.5, the required service
org.example.ILogin is mapped to the service org.example.IAuthentication. The types
are mapped accordingly. The remaining rows define method mappings between the
services and types.

org.example.ILogin=org.example.Authentication

org.example.ILogin.login(java.lang.String,java.lang.String)=org.example.

Authentication.auth(java.lang.String,java.lang.String)

org.example.ILogin.getSessionData()=org.example.Authentication.getUser()

org.example.ISession=org.example.IUser

org.example.ISession.getSessionName()=org.example.IUser.getSessionName()

org.example.ISession.getId()=org.example.IUser.getUsedId()

org.example.ISession.setLastLogin(java.lang.Date)=org.example.IUser.

addLastLogin(java.lang.Date)

Listing 4.5: Example of a service and type mapping between two components

4.1.3 Composition and Assembly

Hierarchical component architectures in the proposed model are enabled by com-
posite components. Primitive components implement their functionality with Java
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code, while composite components implement their functionality with the instantia-
tion and binding of subcomponents. A subcomponent is referenced by the composite
with a location and an instance name. They are then interconnected with connec-
tors. A delegate can be used for the composite component to provide or require
the services and types that a subcomponent provides or requires. Delegates are
special types of connectors, which bind required interfaces of a subcomponent to
required interfaces of the composite or provided interfaces of a subcomponent to
provided interfaces of the composite. The mapping information for the connectors
and delegates must be available within the composite component.
The subcomponents are also bundles in the OSGi Service Platform and can thus

be accessed by all other bundles, regardless of an intended component hierarchy.
I.e., composite components do not completely hide their implementation details, as
this would mean to hide the existence of the subcomponents. While the direct access
to subcomponents from other components is possible, such a setup would break the
hierarchical composition of components.
A system assembly of a complete software system in the proposed component

model can be achieved in two ways. First, components may be installed and in-
terconnected manually. The manual binding is described in chapter 4.2.2. Second,
components can be declared the subcomponents of a composite component, which
contains the bindings and is deployed as a whole.
The example in listing 4.6 shows the configuration file of a composite component.

The composite component has two subcomponents, myClient and myDir. Both
subcomponents have a relative location, i.e. the files representing the subcomponents
are deployed within the composite component. The location attribute accepts any
bundle location that Equinox accepts. In this example, a connector between the
component myClient and the component myDir is defined, as well as a delegate
connecting the provided interfaces of myClient to the composite.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<msc:component xmlns:msc="msc.proposal.system.entities">

<subcomponent instanceName="myClient" location="./Client_1.0.0.jar" />

<subcomponent instanceName="myDir" location="./UserDir_1.0.0.jar" />

<connector required="myClient" provided="myDir" bindFile="MSC-OPT/

innerBinding" />

<delegate provided="myClient" bindFile="MSC-OPT/delegations" />

</msc:component>

Listing 4.6: Example of a service and type mapping between two components

4.2 Implementation

A reference implementation of the proposed component model for OSGi was devel-
oped in the Equinox framework during this thesis. The Eclipse Equinox framework
[Ecl10c] is a wide-spread open source implementation of the OSGi specification.
It is mainly used as the runtime platform for the Eclipse Integrated Development
Environment (IDE) [Ecl10b].
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4.2.1 Components and Interfaces

Primitive components in the proposed model are OSGi bundles with additional
meta data. This meta data consists of required, provided and common parameter
interfaces, as well as a behavioural specification, and an instance name. For rep-
resenting this information at run time, the interface Bundle of the OSGi reference
implementation was adapted. Different methods for obtaining the instance name,
the names of the component interfaces, and the behavioural description were added
to this interface. The implementation of this interface in Equinox is the abstract
class AbstractBundle, which is the foundation for a set of bundle types. This class
was adapted to read the component descriptors when the bundle is initialized. The
data read from the configuration file is stored in the bundle object, to serve the
methods that request the component interface definitions and the behavioural de-
scription. Additionally, the constructor and its invocations were adapted to provide
an instance name to the bundle object.
For representing composite components, four methods controlling the life cycle of

the component had to be adapted. The methods start, stop, uninstall, as well as the
constructor of AbstractBundle have been customized to consider subcomponents.
When a component configuration file defines subcomponents, the constructor of
AbstractBundle initializes the subcomponents before finishing its execution. Thus,
when a composite is installed, it autonomously installs its subcomponents before
it finishes its own installation process. The same procedure was introduced in the
methods start, stop, and uninstall.
Several methods were added to the interface Bundle due to the connectors. The

method getInstance(String) returns an instance implementing the provided or com-
mon parameter interface, that is referenced by the parameter. With the method
getBindingInstance(String), an instance of a binding class can be obtained, that
is defined to bind the required or common parameter interface named by the pa-
rameter. When the method getInstance is invoked on a primitive component, the
component first tries tries to find and instantiate the class that implements the ser-
vice defined by the parameter. If the instance is a common parameter, it is retrieved
by calling the providesMethod on the binding class of the common parameter. Com-
posite components have to use delegating connectors to get a service instance from
a subcomponent. Delegates are described in chapter 4.2.3. The method getBindin-
gInstance works analogously for binding instances.
The methods bind(String, Object) and unbind(String, Object) are used to bind

and unbind objects that define a required or common parameter service. The first
parameter is the name of the required service to be bound, while the second parame-
ter is the object that implements that interface and thus represents the service. The
method unbind needs to be called with the service object as parameter, to cover the
case that a component does not store a single instance, but a list of service objects.
The command line interpreter of the Equinox command console was also extended.

The install command now takes an instance name as optional parameter. When no
instance name is given, the framework sets the instance name of the component to
be installed to the symbolic name of the bundle.
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Interface Automata

The interface automata are implemented by a class structure that directly represents
the interface automaton’s elements and their dependencies. A class InterfaceAu-
tomaton contains references to sets of Actions, Steps, and States, of which one may
be an initial state. A utility class InterfaceAutomataUtils implements all necessary
computations described in [dAH01], by using Java’s Collections API.

4.2.2 Connectors

A connector in the implementation of the proposed model is an instance of the Con-
nector class. The connector class is responsible for binding provided service instances
to requiring components and to perform the interface and method mapping.

Basic Connector

The class Connector implements three different connector types. The first type
connects required interfaces of one component with the provided interfaces of another
component. The second type connects the required interfaces of a subcomponent
with the required interfaces of its composite. The third type connects the provided
interfaces of a composite with the provided interfaces of a subcomponent. The last
two connector types implement the delegate functionality. The implementation of
delegates is explained in chapter 4.2.3.
A connector binds components in a specific direction. The component that is

connected to another component is stored as the fromBundle, while the component
it is connected to is stored as the toBundle. For performing the interface and method
mapping, the connector also stores the mapping information retrieved from the
properties file. When a connector is constructed, it requests the required, provided,
and common parameter interfaces from the involved components, as well as the
behavioural specification. The connector also automatically composes the interface
automata of each mapped pair of interfaces, for later reference. However, the result
of the automaton composition is currently not checked at run time. Finally, the
connector has a state, indicating whether it is bound or not.
The actual binding of a connector is executed in the method bind. In this method,

a connector first requests instances for all provided and mapped interfaces from the
toBundle by using the method getInstance of the interface Bundle, which represents
the component. The retrieved service instances are then wrapped in a dynamic
proxy [Sun10] with the mapping information.
A dynamic proxy class is a class implementing one or more interfaces which is

specified at run time, without the need for prior generation of the class. A proxy
class can be transparently used as an instance of the specified interfaces. When a
method is invoked on an instance of the proxy class, an InvocationHandler object
handles the method invocation. The method call is dispatched to a method of the
InvocationHandler called invoke. The parameters of this method are: the proxy ob-
ject that dispatched the method call, a Method object reflecting the original method
call, and the actual parameters of the original method call as parameters. The re-
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turn value of the method is an Object. The object that this method returns is the
return value of the original method invocation on the proxy object.
The concept of dynamic proxies is used in the reference implementation for wrap-

ping the provided services and types. Each instance of a provided interface is
wrapped with a dynamic proxy. The invocation handler of the proxy is an in-
stance of the class DelegatingInvocationHandler. The connector creates an instance
of this class with the provided service instance and the mapping as parameter. The
proxy object is defined to implement the required interface. To actually bind the
proxy object to the required service, the method bind(String, Object) is called on
the Bundle object of the requiring component. The service binding is depicted in
figure 4.7 for reference.

Implementing Class

Component B

Binding Class

Component A
BA

1. getInstance("B")

Connector

2. bind("A", Proxy(B))

Figure 4.7: The connector requests a service instance from the providing component
and binds it to the requiring component.

The DelegatingInvocationHandler is responsible for the method and type mapping.
When a method is called on a required interface that is implemented by a proxy,
the method invoke of the DelegatingInvocationHandler is called. The handler first
checks whether the method is mapped. If the method is not mapped, the original
method is invoked on the provided instance and the return value is returned to the
caller. This is the case when a method of the type Object is called on a provided
service or type, for example.
When the method is to be mapped by the connector, the handler first loads

the mapped method from the provided interface class. Before actually calling the
provided method, the parameters are checked for mapped types. If a parameter is
of a mapped type, the object must be wrapped by a dynamic proxy with a new
instance of the DelegatingInvocationHandler. As this parameter is already a proxy
instance which will map the method calls or an object that is directly usable by
the requiring component, it needs to be wrapped by another proxy instance that
reverses the mapping, and thus allows the provider to access the parameter. After
the provided method is invoked on the original service, the return type is checked
for a mapped type. If the type is mapped, the return value is also wrapped with a
proxy for the requiring component to use.
The user can establish a connection between two components in two ways: First,

the components can be embedded into a composite, which defines a connector be-
tween its subcomponents. Second, the Equinox command line can be used to define a
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connection. The command msc bind was implemented for this task. The command
is to be called with the instance names of the components to be interconnected, and
a location of a binding file as parameters.

RMI Connector

The Remote Method Invocation (RMI) [GJSB05] connector is an extension to the
basic connector. RMI provides a Remote Procedure Call (RPC) mechanism to Java,
allowing to invoke methods on objects which reside on another Java Virtual Machines
(JVM), on possibly remote hosts. In RMI, a server publishes objects with a name in
an RMI registry. This registry can be queried by RMI clients, to find objects under
the given name. For using the object, a client needs to know the interface that the
object implements. Additionally, this interface needs to fulfill certain requirements:
It has to extend the interface Remote and each method signature needs to declare
the exception type RemoteException to be thrown.
In the reference implementation of the proposed model, the RMI connector is sep-

arated into two main parts. The structure of a connection with the RMI connector
is depicted in figure 4.8. The class RMIProvider is used to publish interfaces in a
local registry. The class RMIConnectorClient is used to create a connection to the
registry and to obtain the desired object.

Requiring Bundle’s Class Loader
on host B

OSGi System Class Loader
on host A

RMIProvider

RMIRemoteServiceImpl

<<interface>>
RMIRemoteService

<<interface>>
Remote

Providing Bundle’s Class Loader
on host A

Provided Service Impl

Dynamic
RMIRemoteServiceImpl

RMI Registry

OSGi System Class Loader
on host B

Connector

RMIConnectorClient

<<interface>
Provided Service

Interface

RMIEnabled
ComponentsRegistry

Binding Class

<<interface>>
Required Service

Interface

Proxy Object Class

1. 2.

Figure 4.8: With the RMI connector, an RMIProvider publishes a provided service
object to a RMI registry. The service object is received by the RMI-
ConnectorClient, which binds the remote object to the binding class and
performs the method mapping.

The services to be published are on the RMI server side. As interfaces of objects
that are published in the RMI registry need to extend the interface Remote, the
class RMIProvider cannot publish the provided interfaces of a component. A proxy
object of the type RMIRemoteServiceImpl is published instead, which implements
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an interface with a method invoke, which can be published to an RMI registry. The
parameters of this method are an object of the class Method, reflecting the method to
be invoked, the parameter types and the actual parameters. With this information,
the proxy object invokes the desired method on the service object.
OSGi uses a hierarchical model of class loading behaviour for bundles and the

framework. Each bundle has its own class loader and may access the class loaders of
the bundles providing its imported packages. As the framework does not import any
package, it cannot access the class loaders of bundles. The RMIRemoteServiceImpl,
which is implemented in the framework, can thus not directly call methods on the
provided service implementation, because it cannot load the class of the object to
be called. To resolve this issue, a subclass of the class RMIRemoteServiceImpl is
generated dynamically at runtime using Javassist [Chi98], a library for generating
classes and editing byte code at run time. The generated class is located in the class
loader of the bundle, thus it may access the provided service class. The RMI enabled
service and a list of components providing interfaces with RMI is then published in
a RMI registry by the class RMIProvider.
The component requiring the remote service is on the client side of the RMI con-

nection. The class RMIConnectorClient extends the functionality of the Connector
by receiving component descriptors and service instances from an RMI registry. Just
as the basic connector, the RMI connector wraps the received instances in dynamic
proxies for performing the method mapping. As the RMI connector receives in-
stances of the interface RMIRemoteService instead of service objects, the invocation
handler has to dispatch the method calls to the method invoke. These method calls
are then transported via RMI to the dynamically generated subclass of RMIRe-
moteServiceImpl on the server side, which finally invokes the desired method on the
provided service.
In RMI, a method call with an object as parameter or return value that does

not implement the interface Remote , results in a call by value. I.e., the object is
serialized for the transport. Thus the provided implementation of a provided data
type, that is to be connected via the RMI connector, must implement the interface
Serializable. The usage of the RMI connector is thus not transparent to the providing
component.
The Equinox console was extended by the command msc provide rmi for pub-

lishing a component’s provided interfaces in a RMI registry. The parameters of this
command are the instance name of a component and, optionally, the port of the local
RMI registry. The command msc bind accepts a RMI URL (e.g. rmi://localhost)
as last parameter. If this parameter is given, the class RMIConnectorClient is used
for the connection, instead of the class Connector.

4.2.3 Composite Components

As explained in section 4.2.2, a connector has one of three types. The first type is
described in that section. The second type connects the required interfaces of a sub-
component with the required interfaces of its composite. The third type connects
the provided interfaces of a composite with the provided interfaces of a subcom-
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ponent. Composite components are interconnected with their subcomponents with
these delegating connectors.
A provided delegate stores the interface and method mapping to the subcompo-

nent’s provided interfaces. When the method getInstance is invoked on a composite
component, it recursively requests its subcomponents for an instance of the interface.
Before each subcomponent is requested, the delegating connector to the subcompo-
nent is used to map the composite interface name to the subcomponent’s interface
name. When a subcomponent is found that provides an instance for the interface,
the instance is wrapped in a proxy class object that directly maps the required in-
terfaces and methods of the requesting component to the provided interfaces and
methods of the subcomponent. Thus the mapping of the requiring component to the
composite and from the composite to its subcomponent are summarized to create a
smaller stack of proxy objects. The method getBindingInstance works analogously
with binding classes.
The composite component’s methods bind and unbind use the delegating connec-

tors to find a subcomponent providing a binding class for the required service and
dispatch the method invocation the the corresponding subcomponent after mapping
the name of the required interface.

4.3 Tool Support

The elements to be defined for assembling an application in the proposed component
model can be completely defined in XML or properties files. Hence no special tools
are required for defining components and assemblies. However, tools could enhance
the efficiency of working with the component model in both phases: at development
time and at assembly time.

4.3.1 Development Time

At development time, primitive components are specified and implemented. In the
proposed component model, the required, provided, and common parameter inter-
faces are defined in the component configuration file at development time. Ad-
ditionally, the behavioural specification of interfaces may be given using interface
automata.

Interface Definition

For defining interfaces within a component to be a provided, required or common
parameter interfaces, they must be referenced in the component descriptor file as
data type or service. This might be an error prone and complex task. In addition,
service interfaces may have structural references to data type interfaces that also
have to be considered. A tool could be used to identify interfaces and their depen-
dencies within the component, for defining them as provided, required, or common
parameters and to distinguish between service interfaces and data types.
Several heuristics could be used to identify those categories automatically. Inter-

faces that are used but not defined within a component may be required interfaces
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or common parameters, while interfaces that are implemented may be provided in-
terfaces. Data types could be distinguished from service interfaces by searching for
required or provided methods that take the interface of interest as parameter or use
it as return value. Interfaces that are never used as parameter or return value might
be service interfaces, while the others might be data types. While these are just
heuristic criteria, an automatic identification of those categories for interfaces may
help the architect to efficiently describe component interfaces with the proposed
model.

Interface Automata Definition

Interface automata are defined manually in XML files. These files may become
large and confusing when the automaton has many elements. A clear structuring of
the document can help to clarify the structure of the automaton, but for a better
overview of the automaton, a graphical tool could be helpful.

4.3.2 Assembly Time

At assembly time, components are interconnected in system assemblies and com-
posite components. The main tasks at assembly time are to find components that
provide the functionality needed by other components, and to define the interface
and method mapping for connectors.

Component Matching and Mapping Generation

The formal import and formal export of components leads to the need for defining
connectors that describe a mapping between the requiring and the providing compo-
nent interfaces. Behavioural interfaces and types need to be mapped as well as their
methods. In non-trivial systems these mappings may be very large and complex
to be created. A tool helps to define these mappings by using a set of criteria for
comparing interfaces and methods.
Several criteria may be used for comparing interfaces, and comparison has to take

place on three layers:

1. Components can be compared by comparing their interfaces

2. Interfaces can be compared by comparing their methods

3. Methods can be compared by comparing their signatures

Criteria for comparing methods are the return and parameter type matching as
well as the method name matching. The equality of method names are an indicator
of a good matching. The matching of the parameter and return type is another
indicator. If the parameter count and the parameter types of a method are the
same, the methods might have the same semantics. For type comparison four cases
must be considered:
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1. The types of the method in the provided and the required interface are shared,
e.g. java.lang.String. In this case the method types can be directly compared.
The types declared by the providing interface might be more specialised in a
type inheritance than those declared by the requiring interface.

2. The type is provided by the providing component and required by the requiring
component. In this case the types can be directly compared to each other.

3. The type is required by both interfaces. In this case the type interfaces might
be compared.

4. The type is provided by the required interface and required by the provided
interface. In this case the types could be directly compared. This situation
should be avoided, as the architecture is a cyclic graph.

In the cases 2 to 4 the comparison of the type interfaces may lead to a recursive
call of comparing types if the type graph is a cyclic graph.
Criteria for matching interfaces are the interface name matching, the average of the

method matching value for the best matching methods, the method count matching,
and the behavioural compliance. The interface name might be an indicator for
interface equality. In addition, the methods are indicators: the same number of
methods in an interface provides information about a possible matching, as well
as the average method matching value of the most matching methods, which is
computed by the criteria described above.
The behavioural compliance in terms of interface automata can be defined by

1 − |AI
P⊗Q ∩ AO

P⊗Q|/|AP⊗Q|, i.e. the quotient of the number of external (input and
output) actions and the total number of actions of the product automaton. The
result ranges from 1 for two completely compatible automata to 0 for completely
incompatible automata. With this information, two components can be compared
by the matching values of their most matching interfaces: the average behavioural
compliance, the average interface name matching and the average method matching
can be summarized to one comparison value.
The comparison criteria can be divided into hard and soft criteria. The type

comparison and the behavioural compliance are hard criteria that can be formally
checked. The name matching is a soft criterion, i.e. the names can be checked
for direct equality or for semantical similarity. As the comparison criteria are not
validated empirically, other criteria may be of interest. The single criteria also need
to be weighted.
An experimental tool has been implemented during this thesis to support the case

study explained in chapter 5.1. The tool supports the architect at assembly time
by matching components and generating mapping configuration files for connectors,
using the presented concepts. The user interface of the tool is divided into three
columns. In the left column, all bundles installed in the runtime are shown. If the
user selects a bundle, it is interpreted as a requiring component against which all
other installed bundles are matched as providing components. The matching result
is shown in the upper table of the middle column. The lower tables in the middle
column show the interfaces of the requiring component that are currently not bound
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at run time and their unbound methods. When a providing component is selected in
addition to the requiring component, the right column shows the matching details,
including the most matching interfaces and the most matching methods of these
interfaces, as well as the corresponding matching results. Buttons on the lower right
corner allow for generation of a connector mapping file of all or selected interfaces.
The matching can be configured using the Configuration menu which allows to define
weights for the single comparison criteria.
For the comparison of the interfaces, the matching program loads the compo-

nent interfaces of the components using their respective class loaders. The content
of the interfaces and their method signatures are examined using Java’s reflection
mechanisms.

Figure 4.9: In this screenshot of the experimental tool, the left column lists all in-
stalled OSGi bundles. For the component selected as requiring compo-
nent in this column, in the upper third of the middle column the bundles
are shown with their matching value as providing components. The lower
rows of the middle column show the interfaces of the requiring compo-
nents that are currently not bound at run time. The right column shows
details how the matching value of the selected requiring and providing
component was computed. The buttons on the lower right allow for an
export of all or selected interfaces into a mapping properties file.
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Graphical Assembly of Systems and Composites

Composite components consisting of several subcomponents may be composed with
a tool that provides a component repository. An architect could select a set of
components to be subcomponents of a composite and interconnect them within this
composite, directly storing the composite in the repository for other architects to
use. Such a tool could also be used to bind and unbind components at run time.
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5 Evaluation

In this chapter the proposed component model is evaluated. The proposed model is
applied to a case study, in which an existing application’s architecture is adapted to
a component architecture which is developed with the proposed component model.
The experiences and problems during the case study are discussed in chapter 5.1.3.
In chapter 5.2 the identified features of formal component models, the OSGi com-
ponent model, and the proposed model are evaluated with criteria for the usefulness
and applicability of engineering models defined by Selic [Sel03], and the results of
this thesis are discussed.

5.1 Case Study

In the case study during this thesis, an existing application’s architecture was
adapted to a component-based architecture, implemented with the proposed com-
ponent model. The adapted application is SyLaGen (Synthetischer Last-Generator)
[BSGT03, SBG10], a performance measurement and evaluation tool developed at
the working group “Specification of Software Systems” (S3) at the University of
Duisburg-Essen.

5.1.1 SyLaGen

SyLaGen is an application for measuring the performance of client-server applica-
tions. The server is used to define a workload for a target system. The workflow
consists of several weighted flows defining user behaviour. The clients are registered
at the server for receiving commands for load generation, which is provided by the
server in terms of the workload information and a class library to the clients. The
class library is the so-called adapter and is used to access the target system. The
workload defines how the client must use the adapter to generate the load. The
clients consist of several worker threads for generating the load. Each worker thread
simulates a user. A measurement in SyLaGen consists of a workload that is executed
by the workers. When the measurement is finished, each worker sends the results of
the measurement to the server.
SyLaGen uses three different measurement modes:

• Single: This mode starts a measurement with one walk through a flow per
worker.

• Ecstasy: In this mode all workers generate as much load as possible by repeat-
ing to run flows for a predefined measurement time.
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• Exploration: This mode can be used to test the scalability of a system. A
measurement starts with a low number of workers. If the performance values
of the target system do not reach a specified level, the number of workers is
increased after a predefined time. When the specified performance values of
the system are reached with a certain number of workers, the tool found the
maximum number of simulated users for the desired performance.

Figure 5.1 shows the architecture of SyLaGen. The server is called Master.

Figure 5.1: SyLaGen consists of a server, the so-called Master and clients. The
Master offers a platform for a behavioural model representing a load
generation strategy. Several clients are controlled by the Master. Each
client has a number of worker threads which generate the load according
to the load generation strategy submitted by the Master. The system
under test can be accessed by using adapters which are Java libraries
sent to the clients by the Master along with the load generation strategy.
[SBG10]

The SyLaGen Master is implemented as an Eclipse [Ecl10b] application, making
use of the features the OSGi Service Platform implementation Equinox [Ecl10c],
which is the basis for the Eclipse Platform, and has also been used for implementing
the proposed component model for OSGi. The SyLaGen Client is implemented as
a Java Application. Both Applications share a common library, which contains the
main data types and common parts of the communication functionality. The original
architectures of the programs is depicted in figure 5.2. Both programs, the SyLaGen
Master and client are implemented in a layered architecture. The Master consists
of four modules. The module common defines most of the data types used in the
system and includes functionality for network communication. The core module of
the Master includes most of the Master’s functionality. It uses the module State
Machine for controlling the measurement. The user interface is used to control the
Master. The client consists of three modules. The core module implements the main
functionality, and relies on the module common for the most data types and network
communication functionality. For generating load, an adapter implementation is
given to the client.
The communication between Master and clients is managed by a proprietary com-

munication library which strongly uses Java Architecture for XML Binding (JAXB)
[Sun09a] for serializing and deserializing objects into XML documents.
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Figure 5.2: The SyLaGen Master consists of four modules. The core module imple-
ments most of the functionality. The client has three modules, of which
the core module also implements most of the functionality. The module
common is used in both applications.
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5.1.2 Changes to the Architectures

Master and client are implemented as monolithic applications with a layered archi-
tecture. They share a library called common. Their structure had to be changed to
represent a component architecture. The applications were split to an architecture
where each component has a high cohesion with the goal to create loosely coupled
components.
The Master’s adapted architecture is divided into seven components as shown in

figure 5.3. Since the master had a layered architecture, several services and types
are used within many classes of the application. These services and types are now
provided by their respecting components, and are defined as required services and
types by the components using them. Several services and types were specified as
common parameters for several components. These connections are indicated by
the solid arrows in figure 5.3. The dashed arrows indicate connectors mapping with
only required and provided interfaces. The component architecture of the client is
shown in figure 5.4. The client application is divided into five components.

Measurement

Validation

Reporting

UI

ConnectorControl

Common

XML

XML

XML

XML

XML

XML

XML

Figure 5.3: The adapted architecture of the Master consists of seven components.
The connectors are represented by arrows. Solid arrows represent con-
nectors handling mostly common parameters, dashed arrows indicate
connectors handling just mostly required-provided relationships. The
component common is reused in the client’s architecture. The compo-
nent interfaces are not notated in this figure.

5.1.3 Experiences and Problems

The implementation of the case study’s application with the proposed component
model indicated issues with the model’s reference implementation, as some types
were not mapped correctly. These issues could be resolved by considering a set of
special cases, e.g. arrays as parameters of methods defined in provided or required
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Figure 5.4: The adapted architecture of the client consists of five components. The
component interfaces are not notated in this figure.

interfaces. These special cases were then considered in the class DelegationInvoca-
tionHandler.
All mapping files for the connectors between the components were generated with

the experimental tool, which reliably suggested matching required and provided
interfaces and their methods between components. The application of the experi-
mental tool helped greatly to reduce the workload for creating method and interface
mappings. E.g., the mapping file between the measurement and UI component
consists of a total of 367 generated lines. Writing these mapping files manually
would be a considerable workload. The estimated values for criteria weights, which
are currently set as default values in the tool, reliably identified the interfaces and
methods intended to match. However, the tool can still be enhanced. Some more
special cases like generic types and array types as method parameters and return
values cannot be matched perfectly. This drawback did not have an impact on the
automatic interface and method mapping in the case study, but there is still room
for improvement.
Adapting the architecture of SyLaGen to a component architecture proved to be

harder than expected. As indicated in figures 5.3 and 5.4, an OSGi bundle had
to be added to the Master’s and the client’s architecture, which holds the XML
communication classes and all dependencies, including many data types used in the
entire application. This bundle is represented as a rectangle in the upper left corner
of the components in the figures. All components depend on this class library. The
application heavily relies on JAXB for communication. The functionality of this
connection could not be implemented in a component, because JAXB needs the
implementation class definitions of the objects to serialize. If the data types had
been defined as required or provided types, the objects given to JAXB would be
instances of interfaces. These objects cannot be serialized by JAXB. Thus the XML
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library contains the communication functionality using JAXB and all necessary data
types. As each component uses these data types, they must import the class library.
Thus the components are not context-independent.
It would be possible to create a JAXB component that uses provided and the

same required data types for serialization and deserialization, but its usage would
be limited to exactly the provided data type objects. A universal JAXB component
would need to rely on dynamically compiled classes from a universal required data
type. While this would be possible, the JAXB component would have to extend the
original JAXB functionality dramatically. This shows that existing frameworks and
programming models might need to be considered in component models and their
application. Patterns for different programming models and their representation in
component models could help to systematically derive a component structure from
existing applications and libraries.
Another architectural issue were cyclic dependencies. For example, when the user

interface needs to be notified about changes in the data it shows, it has a dependency
on the data types to be shown, and provides an observer service interface, which will
be notified about changes in the data. Even when a control component is introduced,
like it is known for the Model-View-Controller (MVC) pattern [GHJV94], the user
interface component and the data have direct or indirect dependencies on each other.
While there is no class-based dependency, there is still an architectural cycle, because
the observer, known from the observer pattern [GHJV94], needs a reference to the
observable, and the observable needs a reference to the observer.
A usual case of these dependencies led to method calls on required interfaces that

take a provided interface as parameter. One example for that case is the user inter-
face component, which requires a data type and provides an observer interface. The
component containing the data type provides the data type interface and requires
an observer to notify. In these situations method calls with a structure of required-
DataType.create(providedObserverType) are invoked, in which a provided type is
given as parameter of a required method. These cases could be solved by declaring
both interfaces, in this example the requiredDataType and the providedObserverType
as common parameters, so both types are required and provided.
One initial goal for the implementation of the component model was Java 1.4

compatibility, for not constraining the compatibility of the OSGi platform. This
goal could not be fulfilled. The mapping of Collection and Map classes with generics
class parameters in the parameter or return type definitions of component interfaces
raised the need to use APIs introduced with Java 5, for generics were introduced in
this version. For example, a return type HashMap<MyProvidedType> needs to map
the generic class parameter of the map. Without using the operations for generics,
the implementation would not be able to see the interface type of the objects included
in the instance of HashMap.

5.2 Discussion

In this section the results of this thesis are discussed. First, criteria for the useful-
ness and applicability of engineering models are applied to the features of formal



5 Evaluation 72

component models identified in chapter 2, the OSGi component model described in
chapter 3 and the proposed component model for OSGi defined in chapter 4. Then
the advantages and disadvantages of the proposed component model compared to
the OSGi component model are discussed.

5.2.1 Criteria for Model Evaluation

The proposed component model is an engineering model purposed for architectural
descriptions of software systems. Selic describes five key characteristics for engineer-
ing models [Sel03]:

1. Abstraction: The model should provide an abstract view on the actual system,
hiding unnecessary information. This abstraction should help focusing on the
relevant parts.

2. Understandability: The model should provide the contained information in an
intuitive way, reducing the intellectual effort needed to understand the facts
represented by the model.

3. Accuracy: The information carried by the model should be true with respect
to the modeled system.

4. Predictiveness: The model should provide a possibility to predict properties of
the real system that are not obvious. Prediction can e.g. be achieved through
formal analysis of the model or experimentation.

5. Inexpensiveness: The development of the model must be cheaper than the
development of the actual system.

Abstraction

Abstraction is achieved by several concepts of formal component models. First, in
formal component models the implementation of primitive components is typically
hidden, providing an abstract view on the actual system. Additionally, composite
components allow for specifying greater building blocks with hidden implementation
details. These concepts provide an abstract view on the system.
An architecture in the OSGi component model consists of several bundles that im-

port and export packages, and service objects that are published under an interface
name in a service registry. OSGi does not provide concepts for abstraction. For un-
derstanding the architecture of an application, each component has to be inspected
separately for interconnections. Composite components cannot be defined.
The proposed component model provides abstraction of the system architecture

by explicitly specifying the component interfaces in a component configuration file.
The actual implementation of components is not necessary to define an architecture.
Composite components allow for hierarchical abstraction of the architecture, hiding
the implementation details of subsystems.
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Understandability

The main information carried by formal component models is the component speci-
fication and their interconnection. In the actual system, this information is not ex-
plicitly stated. Component interconnection may consist of many classes, interfaces
and associations or class hierarchies. By hiding these details, the understandability
is increased. However, as different component models have distinct representations
of components and their interconnections, the understandability varies between the
models.
The information provided by the OSGi component model are distributed in the

source code and the bundle manifest file. While the import and export of packages
is directly defined, the usage of these interconnections and the structure of the
overall architecture are considerably hard to understand, as the information is widely
distributed.
The component specification in the proposed model is given in a component con-

figuration file, containing the necessary information for understanding the architec-
tural role of the component in XML. The interconnections of subcomponents of a
composite are defined in the configuration file of the composite, along with their
mapping file. These mapping files are simple properties files. As they might become
very large, they are not very intuitive, and finding a specific piece of information in
these files can be hard.

Accuracy

The formal component models considered in this thesis are used to define an archi-
tecture prior to its implementation. While some implementations of these models
allow for a code generation, changes in the code that influence the interconnection
or specification of components are usually not reflected in the model. The examined
formal component models do not provide means to check whether the actual system
complies with the architecture.
The information provided by the OSGi component model is used by the runtime

engine to interconnect the bundles and share objects using the service registry. How-
ever, this information does not describe the actual architecture at run time, as the
source of imported packages is e.g. not explicitly defined. The source of a service
object can also not be identified unambiguously.
The proposed component model accurately specifies components to their context,

by explicitly naming required and provided services and types. However, the com-
ponent interconnections in a system assembly is not necessarily described. While
composite components define their interconnections within the component configu-
ration file, the possibility to interconnect components using the Equinox command
line allows for architectures that are not specified in a document or file, but only
exist at run time.

Predictiveness

As formal component models have different foci, their predictiveness varies. Palladio
can be used to predict performance properties for example. As KLAPER is an in-
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termediate language for systematically generating analysis models from component
models, it can be indirectly used for predicting several properties, including per-
formance. Formal component models are used to describe component architectures
prior to their implementation. Thus the functional correctness of component inter-
connections can be evaluated before they are actually bound. The formal founding
of these component models also allow for formally checking interconnections. In ad-
dition to checking structural compliance, Π allows to formally check the compliance
of two behavioural specifications in terms of path expressions.
The OSGi component model does not provide means to predict whether an archi-

tecture has specific properties or if it is applicable. As the OSGi component model
does not provide information about component interconnection prior to run time,
predictions are impossible.
In contrast to the OSGi component model, the proposed model allows to define

an architecture without actually implementing it. Thus the functional applicability
of an architecture can be predicted by checking the interface and method mappings
of the connectors. The compiled Java interfaces provide formal information about
the architecture together with the component and connector specifications. This
information can be used for formally checking the satisfaction of the requirements
and the applicability of interconnections, prior to a system’s implementation. The
behavioural description of component interfaces based on interface automata ad-
ditionally allow to predict whether the components’ usage assumptions for their
interfaces are fulfilled by the interconnection.

Inexpensiveness

Except Π and UML, none of the considered component models allow for a detailed
specification of the implementation. They do not need implementation details for
modeling an architecture. Thus an architecture in a formal component model is
less expensive than an architecture implemented in source code, because the formal
description is an abstract view on the system, hiding information that is unnecessary
when an architecture is assembled.
The architectural information in the OSGi component model is distributed in

the implementation of the bundles and in their manifest file. For developing an
architecture with OSGi, the system has to be implemented.
With the proposed component model, an architecture can be specified prior to the

system’s implementation. Instead of defining the software architecture by classes and
their associations in the source code, each component and their interconnections can
be specified in configuration files and by implementing their required and provided
interfaces. Hence the specification of an architecture in the proposed model is less
expensive than specifying the architecture in the implementation.

5.2.2 Evaluation Summary

The proposed component model has several advantages to the OSGi component
model. For example, it allows for specifying the architecture prior to implementation,
and provides a better abstraction than an architecture implemented with OSGi. As
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a result, the functional correctness of the architecture can be checked with tools, by
finding unsatisfied requirements before the system is implemented.
However, the proposed component model does not provide the abstraction and

understandability of formal component models. When a system in the proposed
model is assembled by using the command line, the component interconnections
are not traceable. Formal component models then provide a better understandable,
abstract view on the complete system.
The considered formal component models in contrast lack the accuracy of the

proposed model if they are not used by the runtime as actual architecture defini-
tion. When the models are used for description only, or for code generation, the
compliance of the system with the architecture is not ensured.
While the proposed component model lacks some of the advantages of formal

component models, it states the architecture more accurately and explicitly than
the OSGi component model, and it provides more means for prediction of the archi-
tectures functionality. The proposed model also provides a better understandability
by using a single point of configuration per component. The abstraction of imple-
mentation details for primitive and composite components is also not provided by
the OSGi component model.
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6 Related Work

This chapter provides information about work related to the content of this the-
sis. Formal component models are self-contained languages which may define a
representation in the Java language. Several approaches to provide richer modu-
lar or component concepts in Java exist. In contrast to formal component models,
these approaches aim to specify component semantics for the Java language. The
approaches can be roughly categorized in two categories: language extensions and
frameworks. In this chapter, some of these approaches are presented and their scope
is defined.

6.1 Frameworks

The Java Enterprise Edition (JEE) [Sun09b] is the standardization of an enterprise
platform for the Java programming language. JEE allows to write server-side appli-
cations. The widely-known component model of the JEE specification are Enterprise
Java Beans (EJB) [Sun09c]. The component type in EJB is called a Session Bean.
Dependencies in EJBs are declared by Java interfaces and annotations. An instance
of the desired component is then injected by a framework directly to the field in
the requiring class. The model also uses a shared interface approach, which leads
to tightly coupled component through type definitions. Thus context independence
is not possible. Additionally, this component model facilitates a flat component
hierarchy, as no composite components exist. Behavioural constraints may be im-
plemented with so-called interceptors that may intercept each call to a session bean.
However, behavioural constraints cannot be specified descriptively for checking the
compliance of two constraint definitions.
The OSGi Blueprint Container, which is specified in the OSGi Service Com-

pendium [OSG09b], is a standardization of Spring Dynamic Modules [Spr10]. The
Blueprint Container provides a dependency injection framework. It creates instances
of service objects and injects them into a service user using a shared interface. This
adds a third party, the injection framework, to the service model, but does not se-
mantically enhance the OSGi service concept. The OSGi Declarative Services, which
are specified in the same document as the OSGi Blueprint Container, and Apache
Felix iPOJO [Apa10] are different approaches to this concept.
CORBA and its CORBA Component Model (CCM) [Obj06] is a practice-driven

approach for representing components in programming languages. In the CCM,
components are defined in an own language, which is independent from the appli-
cation’s programming language. With CORBA it is possible to create and inter-
connect components written in different programming languages. CORBA defines
a language independent framework that allows for communication between its com-
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ponents. Components have required interfaces, but no connector exists as first class
entity to interconnect components. Thus components are not context-independent.
In addition, hierarchical component structures are not realizable with the CCM.

6.2 Language Extensions

ArchJava [ACN02] is an ADL expressed in an extension of the Java programming
language. In ArchJava the architecture is defined with the application source code.
Components in ArchJava are declared similar to classes, but use the component
keyword instead of class. A component also defines required and provided ports, i.e.
a collection of methods. Connect statements are used to interconnect the ports of
two components. Components in ArchJava communicate through ports, which must
be binary compatible. Thus context independence is not given in ArchJava. Also,
as ArchJava is an extension to the Java language, the ArchJava compiler is needed
to compile the programs developed with this technology. Thus a program cannot be
part of an architecture without being recompiled by the ArchJava compiler.
Jiazzi [MFH01] is also a component system for Java. The concept of Jiazzi differs

from the usual component concept in that the means of communication between
component are not interfaces but instead whole packages including abstract Java
classes are shared between the components. Each component defines so called atoms
that contain references to package signatures describing the content of the referenced
package. The imported classes can be instantiated by the importing component. The
instantiation of an abstractly defined imported class results in an instantiation of
the concrete class bound to this abstract requirement. This bound class is a subclass
of the shared one. The abstract classes contained in those packages can also be used
by the importing component by creating own classes that inherit from the imported
ones, to create own instances of the shared class. As the components need to share
packages, complete context independence is not possible.
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7 Conclusion

Component-based software engineering (CBSE) and adjacent topics have been sub-
ject to research for decades. Creating software architectures from scratch using one
of the several academic component models seems to be well understood. As some of
these component models are even formally founded, these languages allow for simu-
lation or analysis of the software architecture before the system is built. Though the
component-based architecture concept is well-understood and backed up by formal
reasoning over attributes, the benefits of the long research can hardly be used in
practical component frameworks in modern programming languages. The current
languages and frameworks do not leverage the research results of the past years.
This thesis aims at resolving this problem by first comparing formal component

models to identify the core features. The identified features are compared to the
component model of the OSGi Service Platform, a practice-driven module frame-
work that is considered a standard component framework for Java. The results of
this comparison are used to create a proposal for a new component model for the
OSGi Service Platform that implements the identified features of formal component
models. The proposal and its reference implementation is evaluated in a case study
that shows the applicability as well as some weaknesses of the proposed component
model.
The proposed component model has several advantages over the original OSGi

component model. In the proposed model, the architecture is clearly stated and
thus traceable, which improves understandability. Abstractions through composite
components allow for efficiently specifying even very large systems, without losing
the understandability of the complete architecture. In contrast to the original OSGi
component model, the proposed model allows to specify an architecture prior to the
system’s implementation.
While this thesis focuses on the functional aspects of software architectures, the

specification of quality attributes is not considered. This could be addressed in
future work. The experimental tool which was developed during this thesis covers
the generation of connector configuration files and finds unbound requirements of
single components. Other starting points for tool support which were introduced in
chapter 4.3 and include formal checking of interconnections and their behavioural
descriptions, as well as tools for graphically composing component hierarchies, are
also left for future work.
In conclusion, this thesis provides a deep examination of the main features of

formal component models, and a starting point for further comparison with practice-
driven component frameworks. The initial goal of adapting the component model
of a framework to support the identified features could be fulfilled and confirmed
in a non-trivial case study. In addition, this thesis deals with a technology that is
currently strongly in the focus of Java development, as the integration of OSGi as a
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component standard in Java is currently under discussion by the Java community.
Hence the results of this thesis might be considered in the development of component
models for current or future programming languages.
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