University of Duisburg-Essen
Institute for Computer Science and Business Information Systesm
Working group \Speci cation of Software Systems"
Prof. Dr. Michael Goedicke

Applying Formal Component Speci cations
to Module Systems in Java

Master's thesis

Applied Computer Science - Systems Engineering
Software Systems Engineering

Marco Melller
<marco.mueller@uni-due.de
Spichernstra e 24
45138 Essen
Matriculation number: 2213373

Essen, 26th March 2010

Supervisor:  Dipl.-Wirt.-Inf. Moritz Balz
Reviewer:  Prof. Dr. Michael Goedicke



Abstract

Formal component models and component-based software engimeg have been
subject to research for decades. The resulting component mtsdallow for system-
atic development of large software systems, while usually focusing a small set
of aspects of an architecture. The formal founding of some larages permits rea-
soning about architecture attributes. However, current progimming languages and
component frameworks hardly re ect such features with respet hierarchical archi-
tectures, context independence, and behavioural description§ components. Thus
the frameworks do not leverage the bene ts of the profound rearch of component-
based software engineering, like enhanced understandability, faal reasoning about
quality attributes and ease of maintenance. Instead of creatingdsely coupled, self-
describing, and self-contained software components, the framwks tend to use
tightly coupled modules. This thesis rst deals with an analysis of exigtg formal
component models with di erent foci. As a result, a set of desirables&ture cate-
gories for component models are identi ed. These categories aetated to OSGi, a
module framework that is considered to be integrated into the Javalatform. The
results of this comparison are the foundation for a proposal for reew component
model in OSGi. The reference implementation of the proposal is evated in a
case study, which shows the applicability of the proposed model. Fityathe thesis
discusses the challenges that came up in the case study and adskedssues needed
to be solved for a productive implementation of the component molde



Contents Il

Contents

Figures Vi
Listings Vil
Abbreviations VIl
1 Introduction 1
1.1 Motivation . . . . . . . . . 1
1.2 BasSiCS . . . . . . . e 3
1.3 ThesisOutline. . . . . ... ... .. .. ... .. 3
2 Formal Component Speci cations 5
2.1 Component-based Software Engineering. . . . . . .. ... ... .. 5
2.2 Palladio Component Model . . . . . ... ... ... L. 6
2.2.1 Interface Denition . . . . . . ... ... L. 6
2.2.2 Component and System Denitions. . . . . ... ... .. .. 6
2.2.3 Deployment and Simulation. . . . . ... ... ........ 8
224 Example. . . . .. 8
23 The language . . . . . . . . . . 10
2.3.1 Component Interface Specication . . . . ... ... ..... 11
2.3.2 Component Implementation. . . . . ... ... ........ 14
24 SOFA 2 . . . e 16
2.4.1 Frame and Interface Denition. . . . . . ... ... ... ... 16
2.4.2 Connector and Architecture De nition . . . . . . .. ... .. 18
2.5 UML Composition Diagram . . . . . . . . . . .. ... ... ..., 20
2.5.1 Interface and Component Denition. . . . . . .. ... .. .. 20
2.5.2 Connection Denition . . . .. ... .. ... L. 21
2.5.3 Graphical Notation and Example . . . . . ... ... ... .. 21
2.6 UniCon . . . .. . . .. 22
2.6.1 ComponentDenition . ... ... ... ... .. ....... 23
2.6.2 Connector Denition . . . . .. .. ... ... L L. 24
2.6.3 Component Interconnection. . . . . ... .. ... ...... 24
2.6.4 System Conguration. . . . . ... ... ... ... .. ..., 25
265 Example. . . ... 25
2.7 KLAPER . . . . . . 28
2.7.1 Component De nition and Assembly . . . . . .. ... .. .. 29
2.8 Comparison Summary . . . . . . . . . e e 29
2.8.1 Provided Interfaces. . . . . . . .. . ... L. 29

2.8.2 Dependencies. . . . . . ... 32



Contents \Y
2.8.3 Composition. . . . . . .. ... 32

284 CoONnNnNectors . . . . . . . . .. 32

2.8.5 Communication Constraints. . . . . .. ... ... ...... 33

2.8.6 Instantiation . .. .. .. ... ... ... ... ... ... 33

287 Assembly . . .. ... 33

2.8.8 Quality Attributes . . . . . ... 34

3 OSGi Service Platform 35
3.1 Module Layer. . . . .. . . . . .. 35
3.2 LifeCycle Layer. . . . . . . . . . .. 37
3.3 Service Layer. . . . . .. 39
3.4 Security Layer. . . . . .. 40
3.5 Comparison of Formal Component Speci cations and OSGi. . . . . 40
3.5.1 Provided Interfaces. . . . . . ... .. ... ... .. 40

3.5.2 Dependencies. . . . . . ... 40

3.5.3 Composition. . . . . . ... 42

354 Connectors . . . . . .. 42

3.5.5 Communication Constraints. . . . . .. ... ... ...... 42

3.5.6 Instantiation . .. .. .. .. ... ... ... 42

357 Assembly . . . ... ... 43

3.5.8 Quality Attributes . . . . .. ... L 43

3.5.9 Comparison Summary. . . . . .. ... 43

4 A Formal Component Model for OSGi 44
4.1 Model Concepts. . . . . . . . .. 44
4.1.1 Components. . . . . . ... e 44
4.1.2 CoNNeCtors . . . . . . . . . 54

4.1.3 Compositionand Assembly . . . . . .. ... ... ... 54
4.2 Implementation . . . . . . . ... 55
4.2.1 Components and Interfaces. . . . . ... ... ... ..... 56
42.2 CoONNECIOrS . . . . . . . . . 57

4.2.3 Composite Components. . . . . . .. .. ... ... 60
4.3 Tool Support . . . . .. 61
4.3.1 DevelopmentTime. . . . . .. ... . ... ... 61
4.3.2 Assembly Time. . .. .. ... ... .. ... ... ... ... 62

5 Evaluation 66
51 CaseStudy . . . . . .. . . . .. 66
51.1 SyLaGen . . . . . . . . ... 66

5.1.2 Changes to the Architectures. . . . . . . .. ... ... ... 69
5.1.3 Experiences and Problems . . . . ... ... ... ...... 69
5.2 DISCUSSION. . . . . . . 71
5.2.1 Criteria for Model Evaluation . . . . .. ... ... ...... 72
5.2.2 Evaluation Summary. . . . . ... ... oo 74

6 Related Work 76
6.1 Frameworks. . . . . . . . ... 76



Contents VvV

6.2 Language Extensions. . . . . . . . . . .. ... e 77
7 Conclusion 78
Bibliography IX



Figures VI
Figures
1.1 A Component in formal component models . . . . . ... ... ... 3
1.2 Components in practice-driven component frameworks . . . . . . . 4
2.1 Component type hierarchy in PalladioRBH*07]. . . . . . .. .. .. 7
2.2 Palladio example repository and SEFF. . . . . . ... ... ... .. 9
2.3 Avresource environment in Palladio. . . . .. ... ... ....... 10
24 ACEMin [SG94 . .. . . . . . . e 11
2.5 List of operators of path expressionsin $G94. . .. ... ... .. 13
2.6 A Componentin SOFA2CHPRO9 . . . . . . ... ... ... .... 17
2.7 Example of a simple SOFA 2 applicationJHPRO9] . . . . . . . . .. 19
2.8 Components and interfacesinUML 2 . . . .. ... ... ...... 22
2.9 A composite component in UMLQbjO9b] . . . ... .. ... .. .. 22
2.10 Main architecture elements in UniCongDK*95 . . . . . .. ... .. 23
2.11 Component interconnection in UniCon. . . . . . ... ... ..... 24
2.12 The KLAPER idea [GMS0Y . . . . . . . . . . . . .. .. ... .... 28
2.13 The architecture of the KLAPER meta modelGMS03 . . . . . . . . 30
2.14 An example component in KLAPERGMS03 . . . . . . .. .. ... 31
2.15 Connector components . . . . . . . . ... 33
3.1 The OSGi architecture PSG094 . . . . .. ... .. ... ... ... 36
3.2 Life cycle of a bundle in OSGIQPSG094 . . . .. .. ... ...... 38
3.3 Independence of service components in OSGIHG10] . . . ... .. 41
4.1 Common parameterconcept . . . . . . . . . . ... oo 46
4.2 Interface AutomatonUser [dAHO1] . . . . . .. ... ... ... ... 48
4.3 Interface automaton for a provided interface. . . . . . .. ... ... 50
4.4 Interface automaton for a required interface. . . . . . ... ... .. 50
4.5 Interface automata for common parameters. . . . . . .. .. .. .. 51
4.6 Example of a product with adapted interface automata . . . . . . . 52
4.7 Servicebinding. . . ... . .. 58
4.8 A connection with the RMI connector. . . . . .. .. ... ...... 59
4.9 Screenshot of the experimental tool for component assembly. . . . 64
5.1 The SyLaGen system architectureSBG1Q . . . . . ... .. ... .. 67
5.2 SylLaGen Master and client architecture . . . . . ... .. ... ... 68
5.3 The adapted SyLaGen Master architecture . . . . . ... ... ... 69
5.4 The adapted SyLaGen client architecture . . . . . .. .. ... ... 70



Listings VII
Listings
2.1 Example of the type view on an exported typein . . . . ... ... 11
2.2 Example of the imperative view on a common parameter type in . 12
2.3 Example of the concurrency view on an exported typein . . . . . . 13
2.4 An excerpt of an algebraic implementation of a componentin . . . 14
2.5 An excerpt of an imperative implementation of a componentin .. . 14
2.6 Acongurationin . ... 15
2.7 Interface denitionin SOFA 2 . . . . . . .. ... ... ... ..... 16
28 Framedenitionin SOFA2 . .. .. .. .. . ... ... ....... 18
2.9 A primitive architecture in SOFA 2 . . . . . ... ... ... ..... 19
2.10 A composite architecture in SOFA 2 . . . . . .. ... .. ... ... 19
2.11 A sample component in UniCondDK*99] . . . . .. ... ... ... 25
2.12 A sample connector in UniCongDK*95 . . . . . .. ... ... ... 26
2.13 Asample systeminUniCon. . . . . . ... ... ... .. ...... 26
3.1 A bundle descriptionin OSGi . . . . ... ... ... . ........ 37
4.1 Componentspecication. . . . . . .. ... ... ... a7
4.2 Declaration of a behavioural speci cation in the component dagator 53
4.3 Aninterface automatondenedin XML . . . .. .. .. ... .... 53
4.4 Declaration of behavioural speci cations for a common paranmest . . 53
4.5 Example of a service and type mapping between two components. 54
4.6 Example of a service and type mapping between two components. 55



Abbreviations VIl

Abbreviations

ADL ........... Architecture Description Language

APl ... Application Programming Interface

CBSE .......... Component-based Software Engineering

CEM ........... Concurrently Executable Module

CORBA ........ Common Object Request Broker Architecture

EJB ............ Enterprise Java Beans

HTTP .......... Hypertext Transport Protocol

IDE ............ Integrated Development Environment

IDL ............ Interface De nition Language

ISO ............ International Organization for Standardizaton

JAR ... ..., Java Archive

JAXB .......... Java Architecture for XML Binding

JEE ............ Java Enterprise Edition

JSR ............ Java Speci cation Request

KLAPER ...... Kernel Language for Performance and Reliability aalysis

MOF ........... Meta Object Facility

MVC ........... Model-View-Controller

OMG .......... Object Management Group

PCM ........... Palladio Component Model

POJI ........... Plain Old Java Interface

RDSEFF ....... Resource Demanding Service E ect Speci cation

RMI ............ Remote Method Invocation

ROBOCOP .... Robust Open Component Based Software Architaate for Con-
gurable Devices Project

RPC ........... Remote Procedure Call

SEFF .......... Service E ect Speci cation

UML ........... Uni ed Modeling Language

URL ........... Uniform Resource Locator

XML ........... Extensible Markup Language



1 Introduction 1

1 Introduction

This chapter describes the motivation and the problem statemenf the thesis, along
with an introduction in component-based software engineering (CEt) [Szy03 and
why it is still not adopted in practical software engineering. In chajer 1.2 basic
concepts of CBSE are shown and related to the concepts used mnfieworks usually
referred to in a component context. The thesis is motivated in chégr 1.1 and an
outline of the document is given in chapted.3

1.1 Motivation

The idea of decomposing problems into smaller parts in a process coomhy called
\divide and conquer" is a mature idea which has also been subject adsearch in
Software Engineering since the early 1970s. Parnas' work on cri¢efor the decom-
position of systems Par7Z] is one of the rst scienti ¢ publications related to this
topic in computer science.

Complexity is an important problem, especially in software engineerin@s the
systems built today tend to be large projects, having many conn@ns with other
complex systems. Breaking down these projects into manageabbatp is a key to
handle this complexity not only for initial development, but also for matenance.
In addition these manageable parts can be reused in other soft@arojects. Reused
parts are usually well-understood and improvements on these redsparts may be
of bene t to each product using them.

One approach for reducing complexity with \divide and conquer" in dtware en-
gineering is CBSE. In CBSE a system is decomposed into loosely-codptempo-
nents. Components are independently deployable units that o er functionality to
be called by other components and may call other components' fttironality them-
selves. The o ered functionality is usually called grovision, while necessary calls
to other components' functionality are usually referred to asequirement In CBSE
the software architecture consists of components that are im@nnected through
their provisions and requirements. These interconnected compons represent the
program. When components are to be reusable in other contextsgy must provide
generic functionality.

Components communicate with each other using well-de ned interdas which
describe the functionality of the underlying component. Connects between com-
ponents are used to interconnect the requirements of one compeat with the pro-
visions of another component. Usually, components can be basienpmnents, pro-
viding their functionality in terms of executable code, or compositecenponents,
which provide their functionality by instantiating and interconnecting subcompo-
nents. These composite components may also be subcomponerita composite,



1 Introduction 2

thus creating a hierarchical architecture. Such hierarchical dnitectures provide
di erent levels of abstraction by hiding the subcomponents of a coposite. These
multi-level architectures enhance the understandability of the sgem by hiding un-
necessary information. Components are usually black-box entitjgsiding their im-
plementation details as proposed in Parnas' information hiding princigs [Par72].
A thorough description of component models is given in chapt&rin this thesis.

Software systems developed using a component-based approaate many ad-
vantages over monolithic software architectures:

1. Software components can be distributed for parallel developnie

2. Maintenance of software components is easier, because cleanigp the com-
ponent implementation can be made locally, without e ects on the coptete
system, as long as the interfaces are not changed.

3. If components are loosely coupled, single components can beharged with
new ones.

These advantages especially take e ect in the development and mi@nance of large
systems. $am97 Chap. 1]

The component models developed as a result of the thorough rashado not only
facilitate a structured development of modular systems, but areften also formally
founded AG97, CS01 CFGGR91, MDEK95, SG94. This formal foundation al-
lows for veri cation of system characteristics, speci cation of amponent interaction
mechanisms, and simulation of the system before it is implemented.

However, while research on component models is very advancedrent pro-
gramming languages, platforms, and frameworks hardly re ect threlated concepts.
Considering modern programming languages like Jav&JSB03 or C# [1SO04,
component de nitions are optional and limited to namespaces. Narsgaces provide
means to combine sets of classes that semantically belong togeth&he highest
level of abstraction in modern programming languages are classesl dheir rela-
tions. Thus external frameworks are needed to provide companeale nitions and
functionality.

The features provided by these frameworks do not leverage then€tionality pro-
posed by formal component models long ago. Thus the practicaseén component
frameworks and platforms cannot bene t from the advanced rearch of formal com-
ponent models.

This thesis addresses the gap between the state of research analkctice-driven
frameworks by comparing the concepts of formal component meld with the fea-
tures of a framework for the Java language and platform. The witjeused OSGi
framework [0SG094 is used for comparison.

The contribution of this thesis is a proposal for a change of the O$Gervice
Platform to provide the features of formal component models. T proposal is
implemented in this thesis and its functionality is evaluated in a case giy.



1 Introduction 3

1.2 Basics

Formal component models have a variety of features and foci, inding compo-
nent interconnection AG97], message ow CS01], data abstraction and concurrency
[CFGGR91], dynamic architectures MDEK95, BHPO6], or modeling and prediction
of quality attributes [GMRS08 RBH™ 07, Inf03].

These component models share features like compositionality as veslrequired
and provided interfaces between components. Figutel shows a component in for-
mal component models schematically. The appended circle reprdsesprovided in-
terface as a contract de ning how to use the component. The s&cular appendix
is a required interface, describing what the component require®im its context. The
rectangle is used to describe a component body. The component mst example
includes interconnected subcomponents implementing the featarprovided by the

component.
Component

Figure 1.1: A schematic representation of a component in formalreponent models
with required and provided interfaces as contracts, and subcompents.

The component's functionality can be accessed via the interfacda.formal com-
ponent models, these interfaces, the component itself, and thedrconnection of
components is de ned formally, permitting e.g. a verication of the omponent
interconnection.

Practice-driven component frameworks like OSGi, the Enterpriseaya Beans
(EJB) [Sun09¢ in the Java Enterprise Edition (JEE) [Sun091, or the Common Ob-
ject Request Broker Architecture (CORBA) Component Model Qbj06] lack some
of the features of formal component models. Figurk2 shows components usually
found in practice-driven component frameworks. Hierarchical ogponent architec-
tures are not supported, as the concept of composite compotseis not implemented.
Additionally, components state their requirements to their contexby directly ref-
erencing the provided interfaces of other components, hencepaoying class level
dependencies that have to be resolved at compile time. These comguts are not
context independent, as the desired context has to be available the component's
compilation.

1.3 Thesis Outline

Chapter 2 will introduce formal component speci cations by presenting a setgon of
speci cation languages and their included component models. Thenoepts are then
compared to identify similarities and di erences between the apprahes. Chapter
3 gives an overview of the OSGi Service Platform. The framework is @ained
and its component model is compared to the essential featuresfafmal component



1 Introduction 4

Component

References

Component

Figure 1.2: In practice-driven frameworks, component structes are usually at, i.e.
no subcomponents are available. They also do not explicitly state tine
requirements to their context, but directly reference the provisns of
other components.

speci cations. In chapter4 a component model for OSGi is described, which was
developed and implemented in this thesis. The proposed componenbael aims at
closing the gap between the formal component speci cations andSGi. Chapter5
describes the evaluation of the proposal using a case study. A dission in chapter
5.2 discovers the strengths and the weaknesses of the proposeshponent model.
Chapter 6 discusses related work before the thesis is concluded in chapter



2 Formal Component Speci cations 5

2 Formal Component Speci cations

Modular architectures are one of the key concepts for managinget complexity of
large software systems. Thus many approaches for describing dutar architec-

tures exist. In this chapter, the fundamentals of component-is&d software engi-
neering (CBSE) are introduced rst, before di erent architectue description lan-
guages (ADL) are examined, which are used for describing soft@acomponents
and their communication. For this purpose, ADLs with di erent foci are consid-
ered: SOFA 2 BHPO6] focuses on dynamic architectures, PalladidRBH* 07] and

KLAPER [GMSO0§ on the modeling and prediction of quality requirements. Uni-
Con's [SDK* 95 aim is to be universally applicable and Pi$G94 focuses on data
abstraction and concurrency. UML is also considered, though it i®oha formal com-

ponent speci cation, but a widely-used means for describing sofiwe architectures.

2.1 Component-based Software Engineering

The term software components is not de ned unambiguously. Hopis integrates
several de nitions in [Hop0Qd. His de nition is: \A software component is a phys-
ical packaging of executable software with a well- de neddapublished interface."
Szyperski's \Compoent Software" $zy03, which is one of the foundational works
on CBSE, contains three di erent de nitions: (1)\Software components are binary
units of independent production, acquisition, and deployent that interact to form a
functioning system."[Szy02 Preface]; (2)A software component is a unit of compo-
sition with contractually speci ed interfaces and expliticontext dependencies only.
A software component can be deployed independently and ibject to composition
by third parties." [Szy02 Chap. 4.1.5]; and (3)A component is a set of normally
simultaneously deployed atomic componengstith the following de nition of atomic
components:\An atomic component is a module and a set of resourcesh the last
de nition, modules and resources are: (M module is a set of classes and possibly
non-object-oriented constructs, such as procedures or fitions" and (2)\A resource
is a frozen' collection of typed items.'[Szy02 Chap. 20.3]. Many more de nitions
exist, as can be seen iBDH" 98].

Despite the lack of an unambiguous de nition, some component claateristics can
be derived, for they are repeatedly described: A component is a thabox entity,
which is reusable in di erent contexts without any need of knowledgabout the com-
ponent's internals or modi cation of those. To enable reusability, tB components
have to be self-describing, i.e. they need to provide publicly visible, lvde ned in-
terfaces. Components consisting of interconnected subcompats form component
hierarchies, which ultimately form the application BHPO6].



2 Formal Component Speci cations 6

2.2 Palladio Component Model

The Palladio Component Model (PCM) RBH™* 07] is an architecture language with
focus on performance prediction. It has been mainly developed dtet University

of Oldenburg and the Karlsruhe Institute of Technology. The PCM ismplemented

with the Eclipse Modeling Framework (EMF) Ecl10d, and is thus based on the
EMF/Ecore meta model. Systems in Palladio are developed using a richaghical

modeling software software calle®CM-Bench [Kar09].

In Palladio a system consists of components communicating with slearinterfaces.
Components can be composite to form a hierarchical architecturéhe PCM-Bench
can simulate a system's architecture. Processing nodes and linksween them
can be de ned as simulated hardware, and components can be alli@chto these re-
sources. Additionally, a usage model can be de ned which descritzesynthetic load
for a simulation with estimated user behaviour. Due to this simulationperformance
issues in the architecture can be identi ed before the system is impiented.

2.2.1 Interface De nition

Components in Palladio de ne required interfaces to describe whichrfctionality is
required by other components, and provided interfaces to desm functionality that
is 0 ered to the context. Messages are shared using operatiorilsan these shared
interfaces. Communication via message ow, unix-pipes etc. is nobmrsidered. In
the PCM interfaces can be de ned at three levels of details:

Signature List Based Interface

The interface consists of method signatures, which are compalalwith oper-
ation signatures of programming languages like Java. The operat®have a
return value, a name, in, out and inout parameters as well as exdem types.

Protocol Enhanced Interface

The protocol enhanced interfaces de ne permitted sequencdperation calls.
PCM does not de ne the syntax of the protocol, thus di erent comepts like
nite state machines or petri-nets may be used. For performancevaluation,
the protocols used in the interfaces need to be compatible.

Quality of Service Enhanced Interface

For annotating interfaces with properties and constraints regding the quality
of service, they can be attributed using the Resource Demandingr8ice E ect
Speci cation (RDSEFF) [RBH* 07].

2.2.2 Component and System De nitions

Components in Palladio are active or passive units of computation witprovided
and optionally required interfaces. The PCM de nes four componetypes, in three
levels of abstraction, which represent three phases in the devaiognt time of an
architecture. The component type hierarchy is shown in gur.l



2 Formal Component Speci cations 7

O

O—— <<ProvidesType>>

<<conforms>>

(O—— <<CompleteType>> |—

<<impl-conforms>> <<impl-conforms>>

Al

<<CompositeComponent>>

Ao g]HH KT

-
Q

<<BasicComponent>>

Figure 2.1: Component type hierarchy in PalladioRBH* 07]

Provides Type

The provides type is the most abstract type and just contains thaformation
necessary for receiving the provided functionality. The requiremts of the
component are not considered at that development phase. As tlp@ssible
requirements of the component are not de ned yet, the descrijpin needs to
be re ned to the CompleteTypein a later phase.

Complete Type

Components of the complete type specify their provided functiohity as the
provides type does. Additionally, their requirements are de ned. fiis type is
used in a later phase of the development, when the complete arcliiere with
all transitive requirements is considered.

Implementation Type Components

Implementation type components are a re nement of complete tygcompo-
nents. They additionally contain implementation details, describing he their
functionality is implemented. Implementation type components may é&com-
posite componentsvhich consist of interconnected subcomponents, arésic
components describing their functionality by a Service E ect Speci cation
(SEFF). The SEFF is a behavioural description similar to UML activity d-
agrams Pbj09b], but it just considers behaviour concerning the required or
provided roles or resource consumption of the hardware underlgirthe com-
ponents, i.e. CPU cycles, hard disk times, etc.



2 Formal Component Speci cations 8

A system in Palladio is de ned in a separate diagram. In this diagram cono-
nents are instantiated and the instances are interconnected. &hrequirements and
provisions of component instances may be delegated to the systenontext, thus
rendering the system a composite component itself.

2.2.3 Deployment and Simulation

As the focus of Palladio is performance prediction, the PCM requiraseans to
describe a deployment environment. For this reason, a resouragvieonment can
be de ned. The resource environment has resource containewghich are nodes
containing e.g. processors and hard disks, and linking resourcesiich represent
interconnections between the resource containers, and can ls2d to represent e.g.
network connections. The resource demand of basic componeistgyiven with an
abstract value, due to the possibly changing underlying hardwar&he CPU load can
e.g. be stated in cycles. The resource demand may be given not ordyaaconstant,
but also as complex functions, to cover probabilistic loads and depncies on
parameters like the size of input data.

A separate allocation diagram is used to allocate the components ofsgstem
to resource containers in a resource diagram. It is also possible terte a usage
model, modeling actions of users interacting with the system and thudescribing
a workload. With this information the architecture can be simulated ¢ evaluate
performance issues in the system. As this thesis focuses on thatistarchitecture
description, the simulation will be omitted here.

2.2.4 Example

Figure 2.2a shows an example of a repository in the PCM-Bench. A repositorjoges
the de ned interfaces and components of an architecture. Thexemplary repository
includes two interfaces]Web and IDatabase IDatabaseand IWeb each declare one
operation with two parameters. The PCM-Bench does not permit talentify in, out,
or inout parameters. Although the component model de nes theelevels of detail
for interface description, the PCM-Bench does not support Protol and Quality of
Service Enhanced Interfaces.

The exemplary repository depicted in gure2.2a de nes two componentsWeb
and Database which both are basic components. The componeWeb provides the
interface IWeb and requires the interfacelDatabase Its implementation is given
using a SEFF, which is de ned in gure2.2b. The componentDatabaseprovides
the interface IDatabase The SEFF in gure 2.2b de nes the implementation of the
operation submit of the componentWeh After the operation call, the component
performs an internal action, which has a resource demand of 20 CRycles. After
the internal action, a call of thestore operation of the required interfacdDatabase
is made before the control ow ends.

Figure 2.3shows an example of a resource environment that includes two resme
containers and one link between them (the connection is not depidtén the gure).



2 Formal Component Speci cations 9

O
)
b
+ |
L3 #$!
0 2
| o
g
b
(a) Example of a Palladio repository (b) Example SEFF in Palladio

Figure 2.2: Figure (a) shows an exemplary repository in Palladio. Theomponent
Databaseprovides the interfacdDatabase The same interface is required
by the componentWeh which also provides the interfacéWeb. In gure
(b) the SEFF of the componentWeb is shown. The rst action of the
SEFF is an internal action with a resource demand of 20 CPU cycles.
The next step models a method invocatiostore of the required interface
IDatabase before the execution of the SEFF is nished.



2 Formal Component Speci cations 10

= [ platform:fresource/TestPCM/default.resourceenvironment
hd I{: Resource Environment <=ResourceEnvironment=
=  ethernet <LinkingResource= [ID: _GINMYOfwEdEBe XOTyqHSA]
= H Communication Link Resource Specification 0.0 =CommunicationLinkResourceSpecification=
4 Latency 2 <PCM Random Variable=>
< Throughput: 100 =PCM Random Variable>
< |[H server <ResourceContainer> [ID: _ZxyUEeZMNEdEUchgXR4hgoa]
- M Processing Resource CPU: Rate: 10 Scheduling: PROCESSOR_SHARING =ProcessingResourceSpecification=
< ProcessingRate: 10 <PCM Random Variable=
- # Processing Resource HDD: Rate: 10 Scheduling: FCFS =ProcessingResourceSpecification=
4 ProcessingRate: 10 <=PCM Random Variable=
~ [H Client <ResourceContainer= [ID: QkenMefwEdSBe[X0TyqHBA]
- M Processing Resource CPU: Rate: M/A Scheduling: PROCESSOR_SHARIMG =ProcessingResourceSpecification=
<4 ProcessingRate: 5 <=PCM Random Variable>
< # Processing Resource HDD: Rate: N/A Scheduling: FCFS =ProcessingResourceSpecification>
< ProcessingRate: 12 <PCM Random Variable=
b & pathmap://PCM_MODELS/Palladio.resourcetype
b L pathmap://PCM_MODELS/PrimitiveTypes.repository

Figure 2.3: The exemplary resource environment contains two resoe containers
(Server and Client) and a link between them.

2.3 The language

The language [SG94 is a formal textual component speci cation and intercon-
nection language with a focus on distributed systems, especially dahbstraction

and concurrency, and the incremental development of softwasgstems CFGGR91,

SG94. In a software component is considered an autonomous unit of agputation

which can be concurrently executed. Thus the components arelled Concurrently

Executable Modules (CEM).

A CEM consists of four sections as shown in gur@.4 import, export, common
parametersand thebody The export and import sections formally describe the types
to be imported from or to be exported to other CEMs, including theiroperations.
The body provides the implementation of the export expressed ing¢himported data
types and operations. The body may also introduce new data typesd operations
to realize the export. The common parameters section describegionted properties
which are also exported, thus publishing some information about theport through
the export interface.

provides a view concept consisting of aype view an imperative view a concur-
rency viewand atype connection view The type view describes the static properties
of the data types of a CEM, i.e the properties independent from esation. The im-
perative view expresses the operations speci ed in the type view im amperative
manner, thus showing how a request is executed including possiblees&lects of
the operation. In the concurrency view, the import and the exparsections are
described with respect to concurrency.

Unlike most other ADLSs, the import of a CEM is not an interface de nel sep-
arately and shared by all CEMs in the system, but is directly contaireée in the



2 Formal Component Speci cations 11

" EXPORT
fo's

Z

O H

% £ BODY

S 2

(@)
ﬁ IMPORT

Figure 2.4: A CEM in consists of four sections. Import, export andcommon
parameters de ne the interfaces, while the body de nes the impleam-
tation, which is hidden to the CEM's context. §G94

component description. The import is a formal description of the gpiired interface
in terms of types, including their behaviour and concurrency constints. For this
reason, the type connection view is needed to de ne a mapping of ionp, export
and common parameters sections of CEMs. This view is used to canst composite
CEMs and, nally, complete system architectures.

2.3.1 Component Interface Speci cation

The export, import and common parameters sections are describley the type view,
the imperative view and the concurrency view. Each view is mandatpr

The Type View

The data types required, used, and provided by the CEM are dedoed in the type
view. Atype is de ned by a name, a set of operation signatures andsat of invariant
properties expressed in equations. Optionally, informal descriptie can be provided.

Listing 2.1shows the de nition of the type Car in the export section, thus de ning
a provided data type that can be used by other CEMs. The typ&€ar has ve
operations. As an example, the operatiosetLocation is a function to be called on
a Car object. The method invocation returns aCar object. The method takes a
parameter of the typelLocation, called loc. The type Location has to be de ned
in either the body, the import, or the common parameters sectionotbe used in
this de nition. Another operation is called getLocation It is to be called on aCar
object and also returns &Car object. The equation describes the invariant that the
operation getLocation called on aCar object with a precedingsetLocation call will
return the location given as parameter in thesetLocation call. Types in the import,
common parameters, and body section are de ned in the same way.

type view specification
export



2 Formal Component Speci cations 12

type Car
general description { A car may be used for driving }

operation start : Location -> Car
operation stop : Car -> Car
operation isStarted : Car -> Boolean
equations
isStarted(start(loc)) = true;
isStarted(stop(start(loc))) = false;

operation setLocation : Car -> Car
variables loc : Location

operation getLocation : Car -> Location
equations
getLocation(setLocation(loc)) = loc

Listing 2.1: Example of the type view on an exported type in

The Imperative View

While the type view describes operations on types as functions, it @® not de ne
the possible side e ects of an operation. These can be expressethm imperative
view on a CEM.

In the imperative view, the operations of a type are expressed in asax similarly
known from imperative programming languages like Java or InterfacDe nition
Languages (IDL) like the OMG IDL [Obj08]. Each operation has a name, a return
value, and parameters. A parameter is described by its direction (iout, or inout),
a name and a type.

As the type Car, de ned in listing 2.1, exports an operation that uses the type
Location as a variable, CEMs that use this type also need access to a CEM imple-
menting the type Location. Thus listing 2.2 shows the imperative view on a type in
the common parameters section. The typeocation is imported from the context
and exported to the context again. The type$tring and Tuple_2 used in this listing
are also to be described by the body, the import or the common pangters section
of this CEM, as the language itself does not provide any types.

imperative view specification
common parameters
type Location
operation getName() : String
operation getCoordinates() : Tuple_2

Listing 2.2: Example of the imperative view on a common parameter tgpin

The Concurrency View

The type view and the imperative view specify the functionality of tyes in a CEM.
This presumes that the operations are allowed to be executed. Tlencurrency



2 Formal Component Speci cations 13

view is used to de ne a sequence of operation calls that is permitted an instance
of a type, including concurrent calls. Path expressionS¢e8F over operation names
are used to formally state which concurrency constraints importeoperations must
ful Il or, respectively, which concurrency constraints the expded operations have.
These path expressions are essentially regular expressions uspgyration names as
words, extended by operations regarding concurrency and sinatieity. Figure 2.5

shows the list of operators of path expressions. Additionally, precditions about

states can be given for operations in the concurrency view. Thepeeconditions

relate to an observable state of the CEM.

Operator Symbol Example Explanation

sequence H a;b b is executed after a
alternation | alb either a or b is executed
concurrency + a+tb no ordering between a and b
repetition [ ] [a] repeated execution of a
simultanity { } {a} simultaneous execution of a
option ( ) (*a*) execution of a can be skipped

Figure 2.5: List of operators of path expressions in $G94

Listing 2.3 shows the concurrency view on the exported data typ€ar. The
method start must be invoked rst. After this invocation, optionally and repeatedly
setLocation may be executed, or simultaneously (i.e. concurrently, unlimited tinse
in parallel) getLocation or isStarted is permitted. At last, the method stop must be
called. Alternatively to this sequencejsStarted may be called simultaneously. Path
expressions are implicitly repeatable as a whole, thus a car can alwdes started
after stopping.

Preconditions are used in this example to describe the permission ftecution
depending on internal states. In listing2.3 preconditions are de ned for thestart
and stop operations. They are only permitted to be executed when the opdion
isStarted returns a speci ed value.

concurrency view specification

export
type Car
path expression
( start ;
(* [ setLocation | { getLocation } | { isStarted } ] *);
stop )

| { isStarted }

precondition definition list
precondition of start is not(isStarted)
precondition of stop is isStarted

Listing 2.3: Example of the concurrency view on an exported type in



2 Formal Component Speci cations 14

2.3.2 Component Implementation

The implementation of the exported types in is de ned in the body se&tion of a

CEM. For this purpose, the body can use the imported types and e its own op-

erations. Components may be atomic or composite. Atomic compang implement
their functionality directly, while the body of composite componentsonsists of a
con guration of subcomponents. Basic components are the thirtype of compo-
nents, besides atomic and composite components. These compisare described
by their interfaces, as their implementation is considered a black box

Atomic Components

The body of atomic components is described by the type view or { ateatively {
the imperative view. In a component implements exactly one data tpe. Thus
the body section is used for the construction of this one type, uginmported types
or internal de nitions. The component's type view is notated using lhte same alge-
braic speci cations that are used for describing the exported tyg This enables the
developer to verify the compatibility of the export and its implementéion. Listing
2.4shows an excerpt of the algebraic implementation of the exportegpe Car. The
operation create car_tuple is an operation of an imported data type which stores
two values, a boolean for the car being started or not, andlaocation object.

type view specification
body
construction of type Car is CarlmplAlgebraic

operation start : Car -> Car
variables loc : Location
eqguations
start(loc) = create_car_tuple(true, loc)

operation getLocation : Car -> Location
eqguations
getLocation(create_car_tuple(true, loc)) = loc

]

Listing 2.4: An excerpt of an algebraic implementation of a componeint .

Alternatively, the implementation of types can be speci ed in the impeative view,
using a language with the features of higher object-oriented pn@gmming languages.
Listing 2.5shows an excerpt of the imperative implementation of the exportegipe
Car.

imperative view specification
body
construction of type Car is Carlmplimperative

operation start(in loc : Location) returns Car
begin



2 Formal Component Speci cations 15

return create_car_tuple(true, loc);
end

operation getLocation(in car : Car) returns Location
description
{ The value is stored in the second
position of the tuple, with a
starting index of 1. }
begin
return getValue(l, create_car_tuple(true, loc)) = loc

Listing 2.5: An excerpt of an imperative implementation of a componéimn .

Composite Components and System Assembly

Composite components consist of interconnected instances obsomponents. In-
stantiation of components is calledncarnation in . The implementation of com-
posite components is also calledon guration. A con guration contains a set of
incarnations of subcomponents, their interconnections, and theterconnection be-
tween the speci cation of the subcomponents and the speci catioof the parent
composite component. As a composite component is a componenglitsit also has
exported and imported types as well as common parameters. Tkeme connected to
the according sections of subcomponents. Thus the compositengmnent delegates
the operation calls to its subcomponents. A system in is a compositeomponent
that is not embedded into another composite component.

An example for a con guration in is shown in listing 2.6. In this example, two
components are incarnated rst. Each component incarnation lsaa name. In a
second step, the components within the con guration are interemected. In this
case,Location { the imported type of Car { is connected to the export of a type
called PointOfinterest, which has not been introduced in the examples above. In
the last step, the export of the composite component is connedtéo the export of
the Car type.

configuration CarManagement
component incarnations
car : Car;
poi : PointOfinterest;

component interconnections
connections of car
from poi import
type Location <- PointOfinterest

operations
getName <- getPoiName;
getCoordinates <- getGeolocation;

connections of Export



2 Formal Component Speci cations 16

from Car import
type Car <- Car

operations
start <- start;
stop <- stop;
isStarted <- isStarted;
getLocation <- getLocation;
setLocation <- setlLocation;
end configuration CarManagement

Listing 2.6: A con guration in

2.4 SOFA 2

SOFA 2 [BHPO06] is a component system mainly developed by the Distributed Sys-
tems Research Group at the Charles University of Prague. Its fogincludes dynamic
recon guration of architectures and di erent communication tetiniques. The com-
ponent model of SOFA 2, which is described ilCHPRO0Y], is based on a well-de ned
meta-model. The meta-model is described by the Meta Object FacylitMOF) tech-
nology, which is also the basis for the Uni ed Modeling Language (UMLA system
con guration in SOFA 2 is expressed in the Extensible Markup Languge (XML).
The components are implemented in Java.

The architectural elements in SOFA 2 are components and connecs which are
interconnected using shared interfaces. The components argnesented to their
context by so calledframes The frame is a black-box view of a component, which
de nes its provided and required interfaces. A so-callearchitecture of a component
provides the component's implementation details. The architectureither directly
implements a frame (primitive component), or composes subcompons to imple-
ment the frame.

2.4.1 Frame and Interface De nition

The component frame de nes the borders of the component angexi es the re-
quired and provided interfaces. The component content is the impleentation of
the component and may be executable code or an architecture absomponents.
A frame may be implemented by many components, thus the compate imple-
menting the same frame are exchangeable with each other. At rumt, the control
part represents the component and the control interfaces allosccess to component
meta data. An abstraction of a SOFA component is shown in gur2.6.

Listing 2.7 shows an example of the de nition of a simple SOFA 2 interface. The
interface has the nameuth and a reference to a Java interface. The Java interface
de nes the functionality o ered by the SOFA interface.

<itf-type name="lAuthentication"
signature="org.example.lAuthentication" />




2 Formal Component Speci cations 17

Contral Interfaces

Frame
I — ™

Business Business
Provided Control pal't : Required
Interfaces i Interfaces
Com
- ponent
Content

Figure 2.6: Components in SOFA are represented bycantrol part at runtime. The
frame forms the component border and describes provided andjuéed
business interfaces which de ne the provided and required behaurto
Control interfaces are also available to dynamically control the lifeycle
of the component. The component content may be a direct implemen
tation of the component behaviour or be composed of subcompatse
[CHPROY]



2 Formal Component Speci cations 18

Listing 2.7: Interface de nition in SOFA 2

The interface may be used by di erent component frames. The saie frame in
listing 2.8 has the interface de ned in listing2.7 as a required interface. The&eomm-
style attribute of the requires and provides tags de ne the communication style
supported by this frame for the given interface. As frames are sign time units,
rather than run time units, they are notimplemented in the underlyirg programming
language.

<frame name="AuthenticationFrame">

<requires name="users"
itf-type="sofatype://IlUsersDB"
comm-style= "method_invocation" />

<provides name="auth"
itf-type="sofatype://|IAuthentication"
comm-style= "method_invocation" />

</frame>

Listing 2.8: Frame de nition in SOFA 2

2.4.2 Connector and Architecture De nition

Connectors in SOFA 2BP04] are, besides components, rst class entities. The SOFA
component model leverages four communications styles for compnt interaction:
synchronous operation calls, asynchronous message delivery; and bidirectional
data streams, and communication using shared memory. Howevtre shared mem-
ory communication style is not supported by the SOFA 2 runtime, thogh the lan-
guage allows for custom communication styles to be added by implertieg them

in Java.

Architectures in SOFA 2 may be primitive, which means they implementhe
behaviour of a frame directly, or composite, using subcomponent& primitive ar-
chitecture is de ned by specifying a name, the frame of the architture, and the
implementation. A composite architecture needs to de ne subcoropents, connec-
tors, and connections of an implementation instead. A compositeduitecture with
required or provided interfaces could itself be subject to compasin.

Figure 2.7 shows an abstraction of a simple SOFA 2 architecture with connec-
tors. Components 1 and 3 are composite components, while comeoinl consists
of the components 2 and 3, and component 3 in turn consists of tkemponents
4 and 5. Component 1 is the whole application. The darker boxes onetlside of
the components represent the required and provided interfaceé the components.
The arrows are connectors between the interfaces. The souafethe arrow is the
required interface and the interface the arrow is pointing at is therpvided interface
(component 4 to component 5) . In case of a connection betweemparent compo-
nent and its subcomponent, the arrow represents a delegation m@quirements or
provisions (e.g. component 3 to component 4). The delegation indiea that the



2 Formal Component Speci cations 19

requirement or provision of a subcomponent is also the requirememt provision of
the parent composite.

Component1

Component3

Component2

Component4 Component5

Figure 2.7: Components in SOFA 2 can be composite (Component 1 aB)l or
primitive (2, 4 and 5). Component 1 is the whole application. The
darker boxes represent required and provided interfaces of thempo-
nent. The arrows are connectors providing communication betwee¢he
components. CHPRO9|

Examples

In listing 2.9, a primitive architecture is de ned. The architecture is implemented
by the Java classorg.example.LDAP Authentication.

<architecture name="LDAP_Authentication"
frame="sofatype://AuthenticationFrame"
impl="org.example.LDAP_Authentication" />

Listing 2.9: A primitive architecture in SOFA 2

In listing 2.1Q0 a composite architecture is de ned, which uses the architecture
LDAP _Authentication de ned in listing 2.9 as a subcomponent. The frame d4u-
thenticationTest is a simple, empty frame without any interfaces. It is the top-level
component of the application.

<architecture name="AuthenticationTest"

frame="sofatype://AuthenticationTestFrame">

<sub-comp name="ldap_auth"
frame="sofatype://AuthenticationFrame"
arch="sofatype://LDAP_Authentication" />

<sub-comp name="testDataSource"
frame="sofatype://LoginTestDataSourceFrame"
arch="sofatype://LoginTestDataSource" />



2 Formal Component Speci cations 20

<connection>
<endpoint sub-comp="testDataSource" itf="auth"/>
<endpoint sub-comp="Idap_auth" itf="auth"/>
</connection>

</architecture>

Listing 2.10: A composite architecture in SOFA 2

In this example, the architectureAuthenticationTest instantiates the components
LDAP _Authentication and LoginTestDataSource LDAP _Authentication provides
the interfacelAuthentication, which is stated as required interface by the component
LoginTestDataSource(not shown in the examples). The composite architecture can
thus interconnect these components using the shared interface

The composite architecture in this example is a top-level componeand thus
neither requires nor provides interfaces.

2.5 UML Composition Diagram

The Uni ed Modeling Language (UML) [Obj09a Obj09h] is a language developed
by the Object Management Group (OMG) and standardised by thenternational
Organization for Standardization (ISO) as ISO/IEC 19501. The auwent version
of the UML is 2.2. The UML is not an ADL in terms of the other languages
presented here, but a set of notations which may also be used t@mesent software
architectures. While the language allows for di erent structural ad behavioural
descriptions of systems, the capabilities for architecture desdiipn are focused on
here.

The speci cation of UML mainly consists of semi-formal diagrams anohformal
text, as the semantics of UML is not formally de ned. Despite this fet, the UML
is widely-used for architecture description and will thus be consided here. In
general, the UML provides di erent facilities for the notation of elerents. The
speci cation de nes the abstract syntax of the language, but ndhe concrete syntax.
For simplicity reasons, the graphical notation that is used in the UMLspeci cation
document will also be used here.

2.5.1 Interface and Component De nition

UML interfaces are de ned as an own entity, consisting of a name dm list of
operation signatures. Components in UML are entities containing bitrary content
as implementation details. The implementation may e.g. be describeding UML
class diagrams and UML state diagrams, rendering them to be simplensponents.
Composite components are insofar di erent from simple componengs their im-
plementation consists of internal component instances and theirtérconnection. A
system in UML is also modeled as a composite component.

Interfaces are attached to components using interaction pointslled ports. The
ports reference well-de ned interfaces to be provided or requde They describe the
structural aspects of the interaction by stating required and mvided functionality.



2 Formal Component Speci cations 21

The component owning the port can access the environment usiniet port's re-

quired interfaces. The environment can also access the compdramly through the

interfaces provided by its ports. The set of provided interfacestached to a port

is called thetype of a port. Additionally, behavioural constraints can be given for
single interfaces, ports, or components. The de nition of behawioal constraints is

mentioned by the speci cation, but not explained.

2.5.2 Connection De nition

Components are interconnected through their provided and regad interfaces. A
required interface of a component is assembled with a provided intece of an-
other component through assembly connectors. Cyclic dependas are not allowed.
When connected, the requiring component can use the providedhfitionality. For
the connector to be applicable, the involved required and providedtarfaces must
be compatible, i.e. the provided interface must o er the same or meroperations as
the required interface.

For interconnecting a component with its parent composite, theelegatesconnec-
tor is used. In a composite the provided interfaces are implementég the internal
components. The delegates connector is used to provide the flimality that an
internal component of the composite provides. The delegates oector is also used
to export one or more required interfaces of internal componenias an required
interface of the composite component.

2.5.3 Graphical Notation and Example

An interface is notated as a rectangle with two parts. the upper paicontains the
key word Interface and the interface's name. The lower part contains the list of
operation signatures. The operation signature is similar to those &wn of current
programming languages like Java or C#. An exemplary interface deition is shown
in gure 2.8 at the right side.

Components are also notated as a rectangle. This rectangle cantathe key word
componentand the component's name, and alternatively as a graphical repess
tation of the key word componentthe icon shown in the upper right corner of the
component in gure 2.8 at the left side. Both representations of the key word may
coexist. A component's port is notated as a small rectangle attaeti to the com-
ponent. A port has a name, which should be written next to it. A refeence to a
required or provided interface is notated with the ball and socketatation, as to be
seen in gure 2.8 The provided interface isVoting, and the required interface is
Database The de nition of the interface Databaseis not included in this example.

Figure 2.9 shows an example of an composite component in UML. The composite
componentStore has a provided interfaceOrderEntry and a required interfaceAc-
count. It has interconnected, internal component instances. Compent instances
are notated as components with a colon in front of their name. Thesaembly con-
nector, which interconnects a requirement with a provision, is notad with as the
ball and the socket engaged, as shown in gur29 between the component®©rder
and Customer. The component instanceOrder implements the provided interface



2 Formal Component Speci cations 22

Voting
«component» =N «Interface»
vote ] — Voting
Election
getCandidates()
| vote(Candidate)
Database getResults()

Figure 2.8: On the left side a component calleBlection is represented with a port
and two interfaces, a provided interfac&/oting and a required interface
Database On the right side, the interfaceVoting is de ned.

OrderEntry, indicated by the delegate connector, which is notated with an amo
The required interface Account originates from the internal component instance
Customer and is exported as a required interface of the composite componen

«component» ﬂ
Store :
OrderEntry
O «delegate» o
“‘—\\H «component» Q Person «component» @
=o e © —
OrderEntry :Order Person :Customer
Orderableltem Account
(]
1 . «delegate»
T
Orderableltem EAW—C
| _
Account
.
«component» Eﬂ
:Product

Figure 2.9: The store is a composite component, which embodies #reomponent
instances. The store has a required and a provided interface whiake
delegated to or from internal components.(Qbj09b]

2.6 UniCon

UniCon is an ADL invented by Shaw et al. $DK" 95 with the focus on o ering
functionality and entities that were widely used by software architets at the time



2 Formal Component Speci cations 23

the language was developed, but were not supported by a languagel according
tools.

The main elements of a UniCon system are components and connestoBoth
de ne the implementation and speci cations shown in gure2.1Q The speci cation
has a type and a unit of association. The associative units of compms are
players. Connectors use ports as associative units. These aggo@ units are used
for interconnecting components using connectors.

Element Component Connector
Specification 4 Interface N ( Protocol A
Type Component Type Connector Type
Unit of association Player Role
Implementation Implementation Implementation

Figure 2.10: The main architecture elements in UniCon are componsnand con-
nectors. Both consist of a speci cation, which has a type and a undf
association, and an implementation. §DK™* 95|

2.6.1 Component De nition

Components are units of computation. They are speci ed by an intiace de nition,
its type and a set of players. An interface is an instance of a type. t#pe constrains
the set of possible players for that interface. Players are used émnnections between
components and connectors, and are explained in sectipr6.3

Components may be primitive or composite. Primitive and composite ogo-
nents can be distinguished by their implementation. The implementatioof prim-
itive components is speci ed with an implementation type. Implement#on types
are e.g. source indicating that a source code le represents the implementation,
or executable stating an executable le to be the implementation of the primitive
component. Implementation types may also require attributes, e.gparameters to
pass to an executable. New implementation types may also be intrashd by the
developer.

Composite components de ne a con guration within their implement&on section
by instantiating and interconnecting components using connect®r Subcomponents
can be primitive or composite components as well. This structure allevior hierar-
chical component systems.

As UniCon doesn't validate the referenced implementation le represiting a com-
ponent, the programmer has to ensure that the implementation oaplies with the
speci cation.



2 Formal Component Speci cations 24

2.6.2 Connector De nition

Connectors are de nitions for the relations of components amoreach other. They
enable components to communicate. Connectors are not necegaxplicitly repre-
sented by source code, but may be a shared memory or more comgl@mmunication
mechanism like Remote Procedure Call (RPC).

Connectors are speci ed by a protocol, its type, a set of roles. Slarly to the
component interface type, the connector protocol type consiins the set of pos-
sible roles of a protocol. Roles are used for connections betweenneztors and
components, and are explained in sectich 6.3

The implementation of a connector is alway8UILTIN , de ning the connection
to be Unix pipes. BUILTIN is the only implementation type supported by the lan-
guage. Also, while composite connectors are generally supportgdtile component
model, they are not supported by the language.

2.6.3 Component Interconnection

Components and connectors are represented to their contexy bheir speci ca-
tion. l.e., other elements can use them without knowing the implemeaion. With

this property, the elements in UniCon follow Parnas' information hidig principles
[Par72. The type of a specication de nes the supported type oplayers or roles
for that component. UniCon provides a prede ned set of types fa&omponents and
connectors. Components and connectors are interconnectesing the players and
roles as shown in gure2.11 The type of a player and an associatedole must
match for the con guration to be valid.

Component 1 | Player 1 |———| Role 1 I Connector Role 2 |——| Player 2 | Component 2

Figure 2.11: A component in UniCon has one or moigayers which are its points
of interconnection. The players are connected to matchingroles of
connectors to enable communication.

UniCon de nes 14 player types, which represent provided and relged services.
Interfaces can provide services in terms of operationRdutineDef), data (Glob-
alDataDef), output operations as system calls WriteFile ), sequential le writ-
ing (WriteNext), writing in Unix Pipes (StreamOut) and remote procedure calls
(RPCDef). They can also require services accordingly with the player typdéou-
tineCall, GlobalDataCal| ReadFile ReadNext Streamin and RPCCall, which are
described in detail by Shaw et al. in$DK" 95]. The player typesPLBundle and
RTLoad di er from the other types, as RTLoad enables to give information required
for real-time scheduling of the component an@LBundle can bundle a collection of
operation and data players.

A component type is used to express the intention of the comportsnprovided
functionality. The number, types, and speci cation of players fora component



2 Formal Component Speci cations 25

is restricted by the component type. As an example, the comportetype Filter
supports the two player typesStreamin and StreamOut

Connectors may have one of seven built-in connector types. Eambnnector type
restricts the number, type and speci cation of roles for a conngar, similarly to the
component types.

Each role type accepts one or more player types. As an examplegthonnec-
tor type Pipe de nes the role typesSource and Sink to be supported. The role
type Source accepts the player typeStreamOut of the component typeFilter, and
ReadNextof SeqFile The role type Sink accepts the player typeStreamin of the
component typeFilter, and WriteNext of SeqFile Thus a connector of the typePipe
can be used to interconnect two components of the tydalter. Role types may be
attributed with additional information as parameters. Detailed tabdes of attributes,
role and connector types, as well as player and component typeandoe found in
[SDK* 95].

2.6.4 System Con guration

A system in UniCon is a composite component without players. A compibe com-

ponent is de ned by its parts, its con guration, and an abstraction. The parts are

instantiations of components and connectors, which constitutdhé composite com-
ponent. The con guration is the association of component playemnsith connector

roles, that interconnect components and connectors. The absttion speci es how
the players of the interface are associated to the players of theplamentation. As

systems in UniCon are made up of composite components, the coargtion of a

system and the con guration of subsystems are the same.

2.6.5 Example

Listing 2.11shows the de nition of a primitive component calledstack The compo-
nent contains an interface de nition and the implementation part. The implemen-
tation refers to the source lestack.G a source code le written in C. The interface
of the component has the typeComputation. The type Computation supports the
player types RoutineDef, RoutineCall, GlobalDataUseand PLBundle. In this ex-
ample, the interface has one player of the typ@LBundle. The members of the
PLBundle are four RoutineDefs each given with a name, the player type and the
signature of the provided operation. The signature is a list of paragters and its
syntax depends the programming language.

COMPONENT stack
INTERFACE IS
TYPE Computation
PLAYER stackness IS PLBundle
MEMBER (init_stack; RoutineDef; SIGNATURE (; "void"))
MEMBER (stack_is_empty; RoutineDef, SIGNATURE (; "int"))

MEMBER (pop; RoutineDef; SIGNATURE ("char *; "void"))
END stackness



2 Formal Component Speci cations 26

END INTERFACE

IMPLEMENTATION IS
VARIANT stack IN "stack.c"
IMPLTYPE (Source)
END stack
END IMPLEMENTATION
END stack

Listing 2.11: A sample component in UniCongDK* 95|

The example in listing2.12 shows the declaration of a primitive connector called
Unix-pipe. The connector in this example has the typ®ipe.

Additionally, but not presented in this example, protocols may includessertions
that constrain the entire connector, like rules about timing or ordeng. These
assertions are de ned as property lists within the protocol de nion.

The primitive connector in example in listing2.12has the typePipe and speci es
the roles Source and Sink. Both roles are constrained with the optional attribute
MAXCONNS. This attribute constrains the maximum number of players, that ths
role can be bound to. The implementation of the connector is set BUILDIN ,
which speci es the connector to be a primitive connector and its impheentation to
be Unix pipes.

CONNECTOR Unix-pipe
PROTOCOL IS
TYPE Pipe
ROLE source IS source
MAXCONNS (1)
END source
ROLE sink IS sink
MAXCONNS (1)
END sink
END PROTOCOL
IMPLEMENTATION IS
BUILTIN
END IMPLEMENTATION
END Unix-pipe

Listing 2.12: A sample connector in UniCongDK™ 95|

Listing 2.13is an example of a system with a display showing the output of a ran-
dom number generator. The components communicate using the ikhpipe declared
in listing 2.12 The composite componenmySysteminstantiates the subcomponents
and interconnects the players with the roles to form a system. Thg/stem has no
players itself. It could however provide and require behaviour by deng players
in its interface. Some of the internal roles would be connected todhcomposite
component's players then, which de nes the communication of thentext with the
internal components. This would render the composite componeatsubsystem that
can be used in a greater context.




2 Formal Component Speci cations

27

COMPONENT randomNumberGenerator
INTERFACE IS
TYPE Filter
PLAYER output IS StreamOut
SIGNATURE ("line")
PORTBINDING (stdout)
END output
END INTERFACE

IMPLEMENTATION IS
VARIANT randomNumberGenerator IN "rng.c"
IMPLTYPE (Source)
END stack
END IMPLEMENTATION
END randomNumberGenerator

COMPONENT display
INTERFACE IS
TYPE Filter
PLAYER input IS Streamin
SIGNATURE ("line")
PORTBINDING (stdin)
END input
END INTERFACE

IMPLEMENTATION IS
VARIANT display IN "display.c"
IMPLTYPE (Source)
END stack
END IMPLEMENTATION
END display

COMPONENT mySystem
INTERFACE is
TYPE General
END INTERFACE

IMPLEMENTATION IS
/* Instantiate the random number generator,
the display and the connector Unix-pipe. */
USES rng INTERFACE randomNumberGenerator
USES displayl INTERFACE display

USES P PROTOCOL Unix-pipe

[* Interconnect the internal elements */

CONNECT rng.output TO P.source

CONNECT displayl.input TO P.sink
END IMPLEMENTATION



2 Formal Component Speci cations 28

Listing 2.13: A sample system in UniCon

2.7 KLAPER

KLAPER (Kernel LAnguage for PErformance and Reliability analysis)is an in-
termediate language for performance and reliability analysis of compent-based
systems GMSO0F. It has been developed mainly at the Universiaa di Roma and the
Politecnico di Milano. The focus of KLAPER is not to design a componéibased
system, but to be an intermediate language for transforming a cgronent-based
design into a language used for performance and reliability analysishd main idea
of KLAPER is that component-based systems are designed using damages that
are well suited for software design, but that for system analysigher languages
are to be preferred. With KLAPER, the transformation from the d erent design
languages to the di erent analysis languages is simpli ed, as it is not nessary to
nd transformation rules from each design language to each anaiydanguage, but
just to nd transformation rules from each design language to KLRER and from
KLAPER to each analysis language, as shown in gur2.12 KLAPER is not an
ADL like the other languages presented here, but for representirthe architecture
designed in an ADL, KLAPER has to provide concepts that are commmoto all
ADLs. With this focus, KLAPER should provide all features of compoent models
considered necessary by its authors.

Figure 2.12: KLAPER is an intermediate language for transforming degn lan-
guages to analysis languages. The component-based design laggsa
on the left can be transformed (semi-)automatically into a KLAPER
representation. Afterwards, the KLAPER model can be transfoned
(semi)automatically into a representation in the analysis language,
which can then be used to analyse the designed syste@MS05

KLAPER is a MOF-based language, just as SOFA 2 presented in chagt2.4.
Thus KLAPER can be expressed with diagrams similar to UML class diagms or
e.g. in XML. In KLAPER a system consists of interactingresources with resources



2 Formal Component Speci cations 29

providing and possibly requiringservices Resources are not limited to software com-
ponents but may also represent physical resources like processor communication
links, which enables the language to represent analysable models.

2.7.1 Component De nition and Assembly

A component in KLAPER is de ned by a resource o ering a service. Téimplemen-
tation of the service is described with a behaviour. Resources repent logical (soft-
ware components) or physical units (processors, communicatitinks, ...). They
have attributes, including a name, a type and performance propes. The services
o ered by a resource have a name and formal parameters with whithey can be
invoked. Thus a service represents one operation. The behaviesulting from the
implementation of the service is represented by a control ow of eps, including a
start, an end, control elements like forks and joins, as well as imteal activities and
service calls, as to be seen in gur2.13 A Behaviour is thus a sequence obteps
with a de ned start and a de ned end. InternalActivities are steps of computation
of the resource implementing the service, whil8erviceCallsare calls to required
services. The complete meta model of KLAPER is depicted in gur2.13

When all necessary components are de ned and the system is to &&sembled,
service calls are associated with the corresponding service de nitso As di erent
instances of one component type may exist, the direct associatialows for a unique
distinction between single component instances.

Figure 2.14shows an example component in KLAPER. The resour@SortComp
represents a component of the typsortComp The component o ers a service called
sort, which can be called with the two parametersstin and listout, which are both
integer parameters.

The service is implemented by a short control ow, which consists gfist one
service call to a service callegbrocessof a component with the typecpu. The
service takes one parameter, which depends on a value calistl This is actually
the value oflstin, a formal parameter of the serviceort.

As can be seen in the example above, KLAPER also has the capability de ne
performance and reliability attributes for resources, servicesnd behaviour. This
fact is not considered here, as this thesis focuses on the functibaspects of the
component model.

2.8 Comparison Summary

After inspecting the given component models, the features prowd by the languages
can be categorised into eight areas, which are described in moreailaéh the following
sections. Table2.1 gives an overview of the comparison results.

2.8.1 Provided Interfaces

As large systems in CBSE are divided into smaller components, eachmgmnent
0 ers services that may contribute to resulting systems. Since gjte components



2 Formal Component Speci cations 30

Figure 2.13: In the KLAPER meta model, aResourceis a logical (software compo-
nent) or physical (processor, communication link, ...) unit which ers
Services Services are implemented by one or moigehaviors which
in turn possibly require services. The attributes of the entities araot
included in this view. [GMS05



2 Formal Component Speci cations 31

Figure 2.14: The componenaSortCompin this example is de ned by itsResource

an o ered Service and its correspondingBehaviour. The service is
realised by a three internal steps, includingtart, stop and a service call
to a resource of the typecpu, which has to be de ned and assembled
later. [GMSO09

Features of the inspected ADLs

Provided Interfaces P v v P P v
Dependencies P P P P P P
Composition P P P P P X
Connectors E g P 5( pp px
Communication Constraints 0 IDx 0 0

Instantiation 6 D 0 D 0 0 X
Assembly

Quiality attributes P X X X X P
ADL Palladio SOFA 2 UML UniCon KLAPER

Table 2.1: Comparison summary of ADL features



2 Formal Component Speci cations 32

may be used in di erent contexts, which are possibly unknown duringevelopment
of the component, the interfaces must be described thoroughlfach of the con-
sidered languages provides means for describing the provided ifaees, though at
di erent levels of detail. In the export is described in three views, ircluding con-
currency constraints and exported types, while in Palladio the deaggtion is limited
to references to Java interfaces and a communication type.

2.8.2 Dependencies

The usage of services provided by other components introducespeéndencies be-
tween the components of a system. For dependency descripticdlsbe context-
independent, they must precisely de ne the functional requirenmés that can be
satis ed by di erent components. The components describe futional dependen-
cies in all considered languages, though also varying in the degredeifil. In SOFA
2 e.g., only interface names are used to describe required servidescontrast,
expressed the import in three views, just as its export.

2.8.3 Composition

When systems become larger, the subsystems in focus also growze.sThe concept
of component composition simpli es to keep an overview of the compdesystem,
by introducing abstraction layers. All ADLs except KLAPER conside composite
components for this purpose. l.e., a set of interconnected conmegmts can be de-
ned as one component with provided and required services. Thergext does not
need to distinguish whether a component is primitive or composite. Thallows for
developing systems of large building blocks. In all languages the pided services
of a composite component are delegated to their subcomponerdasd its unbound
required services are delegated to the composite.

2.8.4 Connectors

Di erent interconnection types between components exist. Comumication may e.g.
be event-based or use method invocation. Connectors may beeoaven more com-
plex, when they should ensure quality attributes like securitydzy02 chapter 21.1.2].
Many of the examined languages do not cover the possible complexafyconnectors
and the resulting e ects, including delays and failure probabilities. IrfPalladio, ,
UML, and KLAPER the only interaction mechanism is method invocation In SOFA
2 di erent interaction mechanisms can be applied, but are limited to a rede ned
set. The component model in UniCon allows for arbitrary connectamplementa-
tions, but the language implementation is limited to Unix-Pipes. Howeve complex
communication mechanisms can be represented by a connector poment, i.e. a
component with the functionality of a connector. The communicatigp components
are then not connected to each other, but both are connectedtwa direct reference
to the connector component, as depicted in gur@.15



2 Formal Component Speci cations 33

Source Sink

0

O_ SecureConnector _C

Figure 2.15: A connector component can be used to substitute cplex connectors.
The component SecureConnectoris a component that is speci cally
designed to securely transport the signals from the compone&burce
to the componentSink over an insecure network.

2.8.5 Communication Constraints

In an open environment, each component may e.g. call each op&atof its required
service, or each event is allowed. Communication is instead often strained in
terms of call sequences or concurrency. In the communication &y be constrained
using the concurrency view. The constraints include preconditiofigr operation calls
as well as a sequence of possibly concurrent calls using path ex@ms. UniCon
prede nes a set of communication constraints for the roles of aqtocol. In KLAPER
the permitted communication is thoroughly de ned using behavioudamodels. In
Palladio and UML communication constraints are mentioned but not deed. SOFA
2 does not consider the interaction at all.

2.8.6 Instantiation

Multiple instances of a component allow for easily reusing componertsrun time.
If an instance of a component fails, components requiring other tasces of this
component are not a ected. For this reason, SOFA 2 de nes a dgsn architecture
which contains named component instances. Connections are thened between
the component instances. , UML, and UniCon use a similar approach Compo-
nent instances are not considered in KLAPER and Palladio. In theserlguages a
component must be copied and renamed to simulate an instantiation.

2.8.7 Assembly

In all inspected languages the system is de ned in some sort of asbéy. At de-
velopment time, components are de ned and implemented indepemdly from their
context, while at a separate assembly time the components are intennected to
subsystems and systems. At assembly time, , SOFA 2, UML, and U@on use a
top level composite component for instantiating the componentsd interconnecting
them. In Palladio a separate system diagram is created, which repemsts the top



2 Formal Component Speci cations 34

view of the system. While it is described in a separate diagram, it is esially also
a composite component. KLAPER does not provide composite compants. Thus
an assembly in KLAPER includes all components and their referencedtities in a
at structure, which might be an issue in large architectures.

2.8.8 Quality Attributes

Requirements speci cations for large software systems usually @lsclude quality
requirements, like performance requirements. For evaluating ditg issues at design
time, the language must consider these requirements besides ttreicural design.
As performance prediction is one of the goals for Palladio, these djtyaattributes
are easy to specify and allow for evaluating the architecture for germance issues
before it is built. In KLAPER the architecture can be attributed with performance
and reliability parameters that can be used for analysis after the ansformation to
applicable analysis models. This functionality cannot be taken for gneed. The
other examined languages do not provide features for quality regements.



3 OSGi Service Platform 35

3 OSGiI Service Platform

The OSGi Service Platform (formerly an abbreviation of \Open Seiges Gateway
initiative”, now just OSGi) is a practice-driven component framewdk for the Java
language, which was initially introduced as \Java Speci cation Requée$JSR) 291:
Dynamic Component Support for Java SE\$un07. Its Core Speci cation [0SG094
describes the framework and the component model. The Service ngmendium
[OSG09 describes a set of standard components for the framework. &tcur-
rent version of the speci cation is 4.2. Many implementations of thepgci cation
exist. Equinox e.g. is a wide-spread open source implementation oétframework,
as well as Apache Felix, both aiming to implement the speci cation for niversal
use. Other commercial implementations exist, like the ProSyst mBddd Server,
which has extensions (i.e. pre-de ned bundles) for smart home, e phone, and
telematics applications Pro1(Q.

The goal of the OSGi Service Platform is to provide a middleware forydamic
software architectures, since the Java language and platform dmt provide any
component concept. For this reason, the framework supporteié management of
so-calledbundles which are technically Java Archives (JAR) containing the compiled
classes and corresponding resources. The bundles are con durethe JAR con g-
uration le ( MANIFEST.NIRising name-value pairs. Bundle meta data include the
unique symbolic bundle name and version as well as dependencies teeobundles
or functional dependencies. The framework is responsible for laagl the bundles,
resolving dependencies, and managing the bundle life cycle, as thadias may be
installed and removed at run time.

To achieve its goals, the framework is divided into ve layers:

Module Layer
Life Cycle Layer
Service Layer
Security Layer

Actual Services

The bundle uses the Module, Life Cycle and Service Layer to provideet actual
services, and the bundle communication is constrained by the Seituilayer. The
architecture is depicted in gure3.1

3.1 Module Layer

The Module Layer adds a more abstract view on applications and pages to Java
by introducing a modularisation model, the so-called bundles. Bundl@se uniquely



3 OSGi Service Platform 36

Figure 3.1: Due to the Java Platform, OSGi is independent from haveare and oper-
ating systems. The execution environment is the Java runtime platfm.
Bundles use the Module, Life Cycle and Service Layer to provide the
actual services. The Security Layer can be used to constraintelper-
missions of bundle communication.SG093

identi ed by their symbolic name and their version. Each bundle may nae pack-
ages and classes to be accessible by other bundles, while the reshefclasses is
hidden. Bundles requiring functionality from other bundles import pakages de ned
by the package name, which may be exported by an arbitrary bundlélternatively,
a bundle can declare a dependency to a speci ¢ bundle, by refergagcthe symbolic
name of the required bundle. This results in an import of all its expo&d packages.
Resolving dependencies is automatically done by the framework. Taatomatic re-
solving process can be controlled descriptively, by naming prefetreersions, vendors
or bundles to be bound.

The module con guration properties in the JAR con guration le include the
following:

Activator

Bundles have a life cycle, which is shown in gur&.2 When a bundle is
started, the activator is executed. Theactivator is a class that inherits from
the OSGi speci ¢ clasBundleActivator. The activator has methods which are
executed when the bundle is started or stopped, and can store efarence to
the bundle's context that the bundle's internals may use.

Bundle-Name
The human-readable name of the bundle.

Bundle-SymbolicName
The unique ID of the bundle.



3 OSGi Service Platform 37

Bundle-Version

Bundles may exist in di erent versions, even in parallel at run time. Tl frame-
work resolves dependencies between components, which may relyspeci c
versions or version ranges. With this mechanism, bundles can be apet at
run time without a ecting existing associations, as both versions e¢arun in
parallel.

Bundle-RequiredExecutionEnvironment

The bundle may provide a list of environments it requires to work. Thee
possible environments include the complete Java Standard Edition Rtime
Environment in version 6 or special execution environments for limitedevices.
This is essentially a dependency for a speci ed context.

Export-Package
Packages within the bundle that are to be visible to other bundles.

Import-Package
Packages to be imported by other bundles.

Require-Bundle
Require-Bundle declares a direct dependency for another bundis! exported
packages of the required bundle are imported.

Example 3.1 shows bundle meta data declaring a bundle with the symbolic name
org.example.persistencen the version 1.0.0.GA. It requires the Java Standard Edi-
tion in the version 6 as environment and declares a class as activatdass. The
bundle imports the packageorg.osgi.framework which is provided by the platform,
in version 1.3.0. The described bundle also exports a package, giving its version
number. The version number is an optional parameter.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Persistence Example

Bundle-SymbolicName: org.example.persistence

Bundle-Version: 1.0.0.GA

Bundle-RequiredExecutionEnvironment. JavaSE-1.6
Bundle-Activator: org.example.persistency.Activator

Import-Package: org.osgi.framework;version="1.3.0"
Export-Package: org.example.persistency.export;versi on="1.0"

Listing 3.1: A bundle description in OSGi

3.2 Life Cycle Layer

The Life Cycle Layer de nes an application programming interface (RI) which
allows to install, start, update, stop, and uninstall bundles at run ime. As the
Life Cycle Layer relies on the existence of bundles, it can not be usedhout the
Module Layer. Figure3.2 shows the life cycle of bundles.



3 OSGi Service Platform 38

Figure 3.2: The life cycle of a bundle begins with its installation. If all degn-
dencies can be resolved, the bundle is ready to be started. Whereth
bundle is stopped again, it returns to the stateesolved where it can
be restarted or uninstalled. The uninstallation ends the life cycle of a
bundle. [OSG093



3 OSGi Service Platform 39

The life cycle of a bundle begins with its installation in the framework, wikch
causes the bundle's state to switch ténstalled. In this state, the bundle may be
uninstalled, refreshed or updated. When a bundle is refreshed, it imresolved
and the framework tries to resolve the bundle again. An update came used to
replace a bundle with a newer version. The framework automaticallgsolves all the
dependencies of a bundle. Thus if a bundle can be resolved, its stateomatically
changes toResolved In this state, the bundle may still be refreshed, updated and
uninstalled as in the statelnstalled. Additionally, the bundle can be started, which
changes the state tdtarting and triggers a call to the bundle's activator class. The
state is automatically changed toActive when the bundle has nished starting. If
the bundle is advised to start lazily (via the Bundle-ActivationPolicy property),
it might also keep the stateStarting until one of its classes is requested by other
bundles. When the bundle is in the statéActive, it is running and accessible to
the other bundles. When the bundle is stopped, the state switché&s Stoppingand
triggers a call to the activator class to stop the bundle. The statéhen eventually
switches toResolvedagain. When a bundle is uninstalled, its life cycle ends.

3.3 Service Layer

The Service Layer adds a publish- nd-bind model to the OSGi franveork. A service
in OSGi is a Java object implementing an interface that is published in aesvice
registry under the name of the interface. Bundles may requestrgiees from the reg-
istry using interface names, to access the object implementing therface. Bundles
may also be noti ed when the registration state of the desired or gkrved interface
changes in the registry.

Services in OSGi are published to the service registry by using the tined reg-
isterService(String, Object, Dictionary) of the BundleContextobject, which is pro-
vided to each bundle via the activator. The method takes an interte name, the
object to register and a dictionary as parameters, and ensurelat the object is
actually an instance of the named interface. The dictionary represts properties of
the service as key-value pairs. These properties can be used bydias searching for
services for Itering the results, by e.g. searching all services rstgred under the
interface nameorg.example.services.TransferServicthat have the value \ACME"
for the property key vendor.id The method returns aServiceRegistrationobject,
which can be used to unregister the service with the correspondingethod.

For accessing a service object of the registry, a bundle has toe®e aServiceRef-
erencefrom the OSGi runtime rst. The ServiceReferencecontains the meta data
of the service including its properties. To obtain aServiceReferencethe bun-
dle needs to call the operatiorgetServiceReference(String)  or getServiceRef-
erences(String, String) The rst returns a single ServiceReferenceof the desired
interface name given as parameter. If more than one service dfijexists, the frame-
work returns the service with the highest value in the propertgervice.rankingor, if
that does not lead to one result, the service that was registeredst. The latter oper-
ation returns an array of all ServiceReferenceso services implementing the desired
interface. The second parameter is a string for Itering the resudt The syntax of the



3 OSGi Service Platform 40

Iter string is based on the Lightweight Directory Access ProtocolLDAP) search
Iters, which are described in How9€. For receiving the actual service object of
a ServiceReferencethe bundle has to call the methodyetService(ServiceReference)
of the BundleContext Alternatively to the simple service objects, a service factory
can be published in the service registry. A service factory is an objeof a class im-
plementing the ServiceFactoryinterface. A service factory will return a new service
object to each distinct requesting bundle.

Besides registering and receiving service objects programmaticatlye service's
provision and requirement can also be stated declaratively. The O8Service Com-
pendium de nes Declarative Services for this intention. As Declarae Services use
the functionality of the Service Layer to register and bind the dectad services, they
do not extend the semantics of services and will thus not be covdrkere.

3.4 Security Layer

The Security Layer provides the security concept for OSGi bundieand is based
on the Java 2 security model. Security con gurations can be used tonstrain the
execution permissions of bundles on class level. As security aspegsts not in the
scope of this thesis, details on the Security Layer will be omitted her

3.5 Comparison of Formal Component Speci cations
and OSGi

After inspecting the OSGi framework, its component model will nolse compared to
the component models examined in chapt& The areas of model features identi ed
for the formal component speci cations will be related to the comgnent model of
OSGi.

3.5.1 Provided Interfaces

The bundles are the elements of modularisation in OSGi. Bundles mayopide
functionality to other bundles. The package export mechanism pvaes means to
hide implementation internals, as was proposed by Parnas iRdr72. Services add
another mechanism for information hiding by o ering an interface nae and a refer-
ence to the corresponding service object. In this case, functadity can be provided
without the need to reveal internal implementation details. Howeve the content
of the interface is not shared in the registry, but only the interfag name { which is
not necessarily unique { and some service properties.

3.5.2 Dependencies

Dependencies between bundles can be speci ed in three ways with@.S

By referencing the symbolic name of the required bundle, all experd packages
of a bundle are available in the referencing bundle.



3 OSGi Service Platform 41

When required packages are referenced, the framework autdioally resolves
the dependencies, and accesses the packages, if a provider igadla.

When a required service is referenced with its interface name, thergce is
requested from the service registry.

All references are resolved at run time when the bundles are stadt and errors will
occur when dependencies cannot be satis ed.

For utilizing data types that are used by a service, each bundle reémcing this
service has to de ne a reference to the bundle providing that datgpe. This tight
integration contradicts the speci cations of formal component mdels.

For using a service object, the interface describing the service shibe available
to both, the providing and the requiring bundle. Besides keeping a pp of the
interface in both, the consumer bundle (which requires the servicand the provider
bundle (which provides the service), two approaches exist for mag the interface
available to both bundles. The approaches are depicted in gu®3. At the left hand
side of the gure the interface is contained in the provider bundle. fle consumer
bundle has a dependency to the provider bundle to access the ifigme de nition
and the corresponding types. At the right hand side of the gurea shared bundle
contains the interface and types. The provider and the consumeeed a dependency
to the shared bundle to access the interface de nition, thus theoasumer and the
provider do not need to know each other. This approach has theahtage that the
consumer bundle can be developed without knowledge about the\see provider,
and thus without a static dependency. However, the service inface still needs
to be de ned before the consumer can be developed. Changes ir thterface will
require a recompilation of all consumers.

Consumer Bundle Consumer Bundle Reference
Reference Use Shared Bundle
Use
Y Y
Provider Bundle Provider Bundle Reference

Figure 3.3: At the left hand side, the interface of the provided seise is included
in the provider bundle. The bundle consuming the service thus has a
direct dependency on the provider bundle. At the right hand side, a
shared bundle contains the service interface. The provider andelton-
sumer bundle have dependencies to the shared bundle, thus thasuamer
can use the service without knowledge of the bundle implementing the
service. MBG10]

Formal component models address this feature at di erent levelsf aetail. In
Palladio, SOFA 2, and UML the components communicate using sharauterfaces.
The interfaces are not part of any component, but separate eties. The problem
with shared types is not addressed by these languages. In eaclroponent is
completely context-independent. All imported and exported type and behaviour
are de ned locally in the components. I.e., the components have niasc references



3 OSGi Service Platform 42

to their context. UniCon addresses the problem similar to . In bothlanguages,
the connectors handle the conversion between required provideetrvices and types.
UniCon relies on prede ned communication mechanisms in this case, ilghin
conversion is de ned by the developer.

3.5.3 Composition

While in formal component speci cations composition is one of the keyoncepts, the
concept cannot be found in the OSGi component model. Bundles angerconnected
within a at structure. No delegation of provisions or requirementgo a composite
can be de ned.

3.5.4 Connectors

In contrast to most of the examined formal component speci cains, OSGi does
not de ne connectors as rst class entities with possibly functionaaspects. Thus
complex interaction mechanisms like secure connections can hardly @onsidered.
In OSGi, due to package access, several interaction mechanisme l&kg. shared
memory can be used programmatically. The component concept 08Qi is focused
on method invocation.

3.5.5 Communication Constraints

Most of the formal component speci cations consider communidah constraints in
some way. In , for example, the permitted interaction of an expoted type is de ned
with path expressions, preconditions, as well as usage requiremsefor imported
types. The component model in OSGi does not consider interacti@onstraints in
such detail. While the Security Layer allows for communication consimts to be
de ned, the constraints do not refer to the service's state buta method call origins.
These constraints are given statically and have to be checked pragmatically.
Thus it is impossible to de ne permitted call sequences or concurren constraints
for method calls but programmatically.

3.5.6 Instantiation

Component instances can be called a key concept for reuse in SOFA,2UML,
and UniCon. In OSGi, components must be distinct regarding the bultes' symbolic
name and version. The installed bundles do not have instance namasd a bundle
with the same symbolic nhame and version cannot be installed twice atedhsame
time. For adding a second instance of a bundle, the bundle would hawebe copied
and the symbolic name or the version number would have to be chadgelthough
with this approach several instances of a bundle could be deployetis could be
considered confusing.



3 OSGi Service Platform 43

3.5.7 Assembly

Each examined formal component speci cation provides some satft assembly. In
Palladio a separate diagram is created for the assembly, and for thst languages
an assembly is a special composite component, in which the intercentions can be
de ned manually.

As OSGi does not support component composition, this approachrmot be valid
for the OSGi component model. A separate assembly time does nats¢ in OSGi.
The bundles and services are interconnected automatically by themework at run
time instead. The connections cannot be explicitly de ned, but jusin uenced by
required and provided properties in the bundles' and services' naetlata.

3.5.8 Quality Attributes

Some formal component speci cations consider quality requiremntsror even provide
tools for system simulation and analysis. In Palladio e.g. the compornsrand other
entities can be attributed with resource demands, and a simulatiolystem is created
in a deployment diagram. With this setup, an architecture can be sintated and
analysed before it is implemented. Since the OSGi component modeled not
provide attributes for quality requirements, such functionality is ot available.

3.5.9 Comparison Summary

The comparison between the core features of formal componenbdels and the
component model of OSGi shows great di erences between thencepts. In formal
component models, loosely coupled, self-describing, and hierarahic structured
components communicate using connectors. In OSGi separatentles are based on
each other, each extending or using the functionality of anothewhile being tightly
coupled to its dependency. Based on this information, a change toet OSGi Service
Platform will now be proposed that aims at representing the concep of formal
component models in the practice-driven framework.



4 A Formal Component Model for OSGi 44

4 A Formal Component Model for
OSGi

As shown in chapter3, the OSGi component model strongly di ers from the formal
component speci cations discussed in chapt& The OSGi component model lacks
some essential features of formal component models. The maimesof components
in OSGi is the tight coupling and the lack of concept for composite cqgmonents. In
this chapter, a new component model for OSGi will be proposed. &hproposed
model aims at implementing the features of formal component speations in the
practice-driven OSGi Service Platform. These features are implemted in three
concepts of the proposed model: The provided interfaces and dedencies will be
introduced in the component speci cation. These interfaces arenaotated with
behavioural speci cations, representing the feature for commication constraints.
The concept of connectors is represented as a rst class entitytime model. A system
assembly in the proposed model is a composite component. Comp®sibmponents
consist of instantiated subcomponents and their interconnectionThe feature of
providing information about quality attributes of an architecture is not addressed
by the proposed model.

The model's concepts are speci ed rst in sectiod.l, before the reference imple-
mentation is described in sectiomt.2 Finally, the chapter proceeds by describing
the tool support for the model's implementation in sectior.3.

4.1 Model Concepts

In this section the concepts of the proposed model are presehteThe rst class
entities in the model are components and connectors. Compongnhay be primitive
and composite, introducing hierarchical architectures in the OS&ervice Platform.

4.1.1 Components

Components are rst class entities in the proposed model. They hana name and
interfaces for interconnection with their context. The interfacecan also have a
behavioural description.

Primitive Components and Interfaces

Primitive components are bundles within the OSGi Service Platform wht additional
meta data. They have a name and provide or require services ang@s. Services are
interfaces that are implemented by a single class within the providingpmponent's
bundle. Instances of this class are provided to the component'sntext. These



4 A Formal Component Model for OSGi 45

services may use complex data types as parameters or return égothat are not
available in the platform, and which have to be provided to the contéxas well.
Types are also represented by interfaces. In contrast to sems; they are not neces-
sarily implemented by a single class, but may have multiple implementatisrwithin
one component.

Services and types are represented by Java interfaces within tpeoviding or
requiring bundle. A component con guration le is used to declare aoponent
meta data. For primitive components, these meta data are decldmans of provided,
required, and common parameter interfaces and their attributes

The realization of a provided service is a class implementing the compesding
Java interface. Provided services may be singletons. l.e., each titie context
requests an instance of the service, the same instance is retatneegardless of
the requests origin. If the service is not declared a singleton, eagquest will be
answered with a new instance of the service. For generating a newtance of the
service, the default constructor is used. As some classes do nitiva instantiation
with this constructor, an instantiation method can be stated, whik will be called
instead. The instantiation method thus has to be a static method ahreturn an
instance of the provided interface. The descriptors of providegjes just contain
the type's interface.

The required services and types of a component are also Java ifaees within
the bundle. The interface is declared to be required in the comporeaon guration
le. Required services are not implemented by a class within the bundl€bjects
of classes implementing a required interface are bound to a binding sdainstead,
which acts as a container for the required services. The requireghd@ce declaration
thus contains a binding class and a method to be called for binding. ThHending
method will be invoked with an instance of the required service as @aneter. An
unbinding method of the binding class can also be stated, which will bevivsked when
a required service should be removed. Likewise the classes implerngna provided
service, the binding classes may be singletons and an instantiationthreed may be
declared. The declarations of required types do not contain a bindjrclass and a
binding method, for they are not bound by the runtime. As they aranstantiated
within the functionality of the component instead of the framework they also do
not de ne an instantiation method and the singleton attribute.

The third category of component interfaces are common paranees. The com-
mon parameter semantics is based on the concept in . A common pEmeter is
a required service or type that is also provided within one componenfigure 4.1
visualizes the concept. A component requiring a speci c interfaceay provide the
requirement to its context. The component is then called to be panaeterized with
this required interface. Dierent instances of the component mayave di erent
common parameters, and thus describe di erent functionalities. Aommon param-
eter service is bound to a component like a required service. Additally to the
attributes of required services, a method of the binding class muke de ned that
returns the instance of the common parameter service. An instea of the common
parameter is bound to a binding class. As the same instance has tore&rned on
an invocation of the method providing the common parameter serdcthe binding
class for a common parameter is always de ned to be a singleton.



4 A Formal Component Model for OSGi

46

Common
Parameters

Provided interfaces

Client

Required interfaces

Provided interfaces

Common .
List
Parameters
Required interfaces
Provided interfaces
Common
Car
Parameters

Required interfaces

Provided interfaces
Common .
List
Parameters
Required interfaces
Provided interfaces
Common
Person
Parameters

Required interfaces

Figure 4.1: The client component requires two list services. Each listrsice uses
another provided interface as a common parameter. The compaoihe.ist
at the left side uses the interfaces provided by the compone@ar. The
componentList at the right side uses the interfaces of the component
Person The client has access to two lists, a list of cars and a list of

people.



4 A Formal Component Model for OSGi 47

The provided and required services and types are de ned locally inéhcompo-
nent's bundle. The component is thus an independently compilable amtployable
unit, because no dependencies to other components or the sysi@re introduced at
class level.

Listing 4.1 shows an exemplary component con guration le. The con guratio
le de nes a set of provided and required services and types, as livas common
parameters.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ? >
<msc:component xmlns:msc="msc.proposal.system.entiti  es">

<provides
interface="org.example.lAuthentication"
implClass="org.example.impl.Authenticationimpl"
singleton="true" />

<provides type="org.example.lUser" />

<requires
interface="org.example.lLogin"
bindClass="org.example.impl.Client"
bindMethod="bindLogin"
singleton="true" />

<requires type="org.example.lSession" />

<commonparameter
interface="org.example.lLogin"
bindClass="org.example.impl.Client"
bindMethod="bindLogin"
providesmethod="getLogin"
instantiationMethod="getInstance" />

<commonparameter type="org.example.|Session" />

</msc.component>

Listing 4.1: Component speci cation

Behavioural Speci cation for Interfaces

Additionally to the attributes stated in chapter 4.1.1, all component interfaces may
also de ne a behavioural speci cation. The proposed componentadel uses inter-
face automata fIAHO1] for describing permitted behaviour.

Interface Automata  An interface automaton is essentially a nite state machine
with in- and output actions, where each input de nes a received miebd call and each
output de nes an outgoing method call. This mechanism is used to dagge how a



4 A Formal Component Model for OSGi 48

component implementing this interface can be called by its context drhow it makes
calls to external components. Two interface automata interactybsynchronizing
their behaviour with input and output actions. l.e. when two automaa share the
same action names, the input and output steps with the shared ach name can only
re synchronously. Interface automata use aroptimistic approach to composition.
l.e., two components are compatible if their respective interface tumata share at
least one possible path.
An interface automatonP is a six-tuple P = hVp; Vit AL AS; Al Thi.

Vp is a set of states.

VitV is a set of initial states, with at most one state. P is callegémpty
if Vit =,

AL;AS and A are disjoint sets of input, output and internal (hidden) actions.
Ap = AL\ A9\ Al is the set of all actions.

Te Vo Ap Vp is a set of steps, which move the automaton from one
state to another when the action is performed.

As an example, gure4.2 shows the graphical representation of an interface au-
tomaton User. This interface automaton de nes two input actionsok and fail, as
well as one output actionmsg The automaton consists of two states 0 and 1, of
which 0 is the initial state. When the methodmsgis called by the component behind
this interface, the automaton moves to the state 1. In this statéhe automaton just
accepts a method call taok. When this method is called by an external component,
the automaton is in state 0.

Figure 4.2: The interface automatoriJser has two states, 0 and 1, with 0 being the
initial state. The transitions are annotated with the outgoing metlod
call msg and the incoming method callok. The incoming actionfail is
de ned but can never be handled by the automaton. The contextfahe
component has to make sure this method will never be callediAHO1]



4 A Formal Component Model for OSGi 49

Two interface automata can be composable and compatible. The cpasition
of two interface automata can be computed with algorithms explaiein [dAHO1].
The compatibility of interface automata is de ned in JAHO1]:

\Two interface automata P and Q are compatiblei (a) they are
composable and (b) their composition is nonempty."

Two interface automata are composable when they don't share injpar output
actions, and their internal actions do not share their name with anwaction of the
opposite interface automaton. This is necessary, because twoerfce automata
synchronize on actions with similar names. For calculating the comptisn of two
interface automata, the product has to be calculated rst. The poduct of two
automataP Q is de ned as follows:

Ve =V Vo

VPinitQ - Vpinit V(i?nit

Vi o = (Ap [ Ap) nshared(P; Q)
VP o = (AR [ Ag) nshared(P; Q)
Vi' o = AR [ AG [ shared(P; Q)

shared(P; Q) = (AL \ A8)[ (AQ\ A'Q) are the actions shared by the interface
automata

Tp o isdened as

Te o =f((viu);a; (v u))j(v;a;V)g 2 Tp » a2 shared(P; Q) ~ u 2 Vqg
[f ((viu);a;(v;u))i(u;a;u)g 2 To ~ aZshared(P; Q) u 2 Veg
[f((v;u); a(vEud)j(via;v) 2 Tp A (u;a;u) 2 To ~ a2 shared(P; Q) ~ u 2 Veg:

If two interface automata are compatible, they have at least onehared path,
which is de ned by the composition. The compaosition of two interfacautomata is
a closed operation, i.e. the composition of interface automata is also an infece
automaton. Thus arbitrary numbers of interface automata can & composed. The
composition of interface automata is also transitive, so the ordef ocomposing the
automata is irrelevant.

Interface Automata in the Proposed Component Model  The interface au-
tomata approach assumes shared interfaces which are used asired and provided
interfaces. The proposed component model uses formal reqdiees well as provided
interfaces instead, which are interconnected with connectors. hiis the involved
components do not necessarily use the same method names forroomcation. For
this reason the interface automata approach was adapted to trsguation as follows.

Provided interfaces only accept method calls. They are not used noake method
calls to external components, and have no output actions. Thus? is empty. The
actions are annotated with the signatures of methods in the inteate. An example



4 A Formal Component Model for OSGi 50

of an interface automaton for a provided interface is shown in ger4.3 The
interface has four methodsinit() and deinit(), getName() and getLocation(). The
method init has to be called before any other method. The methodgtName()
and getLocation() may then be called repeatedly, before the methadkinit may be

called.

init()?

getName()?

etLocation()?

deinit()?

3

init() T deinit() T getName() getLocation()

o

Figure 4.3: Interface automaton for a provided interface

Required interfaces just de ne outgoing method calls instead. Tleare not called
by external components. ThusA} is empty. Output actions are also annotated
with method signatures. The interface automaton of a required ietface is shown
in gure 4.4 The interface has four methodscreate(), destroy(), getPOIName(),
and getGeoLocation() The interface is to be used similarly to the interface in gure
4.3

4

T create() I destroy() TgetPOlName() getGeolLocation()

create()!

getPOIName()!

etGeoLocation()!

destroy()!

Figure 4.4: Interface automaton for a required interface

Interface automata for common parameter interfaces forwardccepted method
calls to another component. A common parameter interface needs interface au-
tomaton with input actions, but without output actions, for checking the compat-
ibility of a provided interface with the common parameter interface.For checking
the compatibility of the common parameter interface with a requirednterface, an
automaton with output actions is needed. Thus a common parametenterface



4 A Formal Component Model for OSGi 51

needs to provide two interface automata. These interface aut@ta just dier in
the de nition of actions as input or output actions. In the example ingure 4.5the
common parameter interface has four methods which are relatedl the methods in
the required and provided interfaces described in the examples &bo

Car Provided interface

init()?

getName()?

ﬂ\

. etLocation()?
create() destroy() getPOIName() getGeoLocation() deinit()?

getPOIName()!

N J
create()! init() ‘[ deinit() IgetName() getLocation()

etGeoLocation()!

destroy()!

PointOfinterest
Common Parameter

create()?

getPOIName()?

4 getHouse 4
. tGPSDat
etGeoLocation()? reg() T unreg() T Name() gel ata()
destroy()?
1 L reg()! getHouse
create() T destroy() IgetPOIName() getGeoLocation() 0 Name()!
getGPSData()!
unreg()!
Operah house Required interface

Figure 4.5: On the right side interface automata for a required and @rovided inter-
face are shown. The connection in this example is de ned over a comm
parameter of a third component, which is shown on the left side. For
checking the compatibility, the common parameter has to provide v
interface automata which are highly similar. One de nes the actionssa
input actions, and one de nes the actions as output actions.

The original approach of interface automata requires action narm¢o match for
synchronisation of automata. This is expressed in the de nition foshared actions
shared(P; Q) and for the actions of a product. As the proposed component rdel
uses formal required and provided interfaces, these names do mecessarily match.
For this reason the interface automata must be adapted for tha@duct operation. A
connector de nition is needed that maps the methods of one intexée to the methods
of the other interface, and the actions of the involved automatadve to be rede ned.
The connectors described in sectioh.1.2provide the necessary information. Instead



4 A Formal Component Model for OSGi 52

of computing the product of two interface automateP and Q, the automata P°and
Q0 are used. The action names (i.e. the method signatures) B and Q° are
concatenated. The new action names represent the method mapgpde ned in the
connector.

Figure 4.6 shows an example, how the automata are adapted. The interface
automata are mapped with the connector information. The resultip adapted au-
tomata are used for computing the product. Since only the input vables of the
interface automata have been changed, all algorithms for comjing the composition
of interface automata can be reused.

Car Car'
init()? init()-create()? getName()-
getName()? getPOIName()?

Provided 0
Interface

o etLocation()? deinit()- OetlLocation()-

einit()? destroy()? getGeolLocation()?
N N N N
init() I deinit() I getName() getLocation() init()- Ideinito. IgetName()- betLocation()-
create() destroy() | 9etPOIName() etGeoLocation()

PointOfinterest

1 I A init()- deinit()- getName()- A getLocation()A-
create() destroy() getPOIName() getGeoLocation() create() destroy() getPOIName() getGeolocation()
create()! init()-create()! getName()-
0 getPOIName()! getPOIName()!
1 Required
Interface
; etGeoLocation()! deinit()- GetLocation()-
destroy()! destroy()! getGeoLocation()!

PointOfinterest'

Product(Car', PointOfinterest’)

init()-create(); getName()-
getPOIName();

0

deinit()- OetlLocation()-

destroy(); getGeoLocation();

Figure 4.6: The upper and the lower left interface automata show éhoriginal au-
tomata P and Q. the upper and the lower right automataP®and Q° are
adapted with connector information. The bottom interface autorata is
the product P° Q°



4 A Formal Component Model for OSGi 53

Component Model Integration In the proposed component model, component
interfaces may be attributed with a behavioural speci cation in tems of interface
automata at development time. When the components are intercoacted at as-
sembly time, the interface automata's compliance can be checked maally, to nd
compatible interfaces and components. The correctness of thepiementation re-
garding the automata is not monitored at run time.

Interface automata are de ned in an own le for each interface d¢aration in the
component descriptor. Listing4.2 shows how to add the de nition of an interface
automaton to a provided interface.

<?xml version="1.0" encoding="UTF-8" standalone="yes"? >
<msc:component xmlns:msc="msc.proposal.system.entiti  es">
<provides interface="user.A" implClass="user.Almpl"
behaviouralSpecification="MSC-OPT/A.ia.xml"/>
</msc.component>

Listing 4.2: Declaration of a behavioural speci cation in the compome descriptor

The le MSC-OPT/A.ia.xmlde nes the interface automaton and is shown in listing
4.3 The automaton consists of three states, 0, 1, and 2 of which O ietinitial state.
Three output actionsinit() , add(java.lang.String)and deinit() re ect methods of the
corresponding interface. The steps de ne that the methodit() has to be called
rst, before the method add(java.lang.String) may be called. Afteradd a call to
the method deinit() is expected, before the automaton is in state 0 again.

<?xml version="1.0" encoding="UTF-8" standalone="yes"? >
<ns2:interfaceautomata xmins:ns2="msc.proposal.syste m.interfaceautomata.
entities">
<states name="0" initial="true" />
<states name="1" initial="false" />
<states name="2" initial="false" />

<actions type="output" name="init()" />
<actions type="output" name="add(java.lang.String)" />
<actions type="output" name="deinit()" />

<steps to="1" from="0" action="init()" />

<steps to="2" from="1" action="add(java.lang.String)" / >

<steps to="0" from="2" action="deinit()" />
</ns2:interfaceautomata>

Listing 4.3: An interface automaton de ned in XML

The de nition of common parameters requires an automaton for #hprovided and
the required view. An example of a behavioural description for conon parameters
is shown in listing 4.4.

<?xml version="1.0" encoding="UTF-8" standalone="yes"? >
<msc:.component xmins:msc="msc.proposal.system.entiti  es">
<provides interface="user.CP" implClass="user.CPImpl"
behaviouralSpecificationProviding="MSC-OPT/CPProv.i a.xml"



4 A Formal Component Model for OSGi 54

behaviouralSpecificationRequiring="MSC-OPT/CPReg.ia  .xml"/>
</msc:component>

Listing 4.4: Declaration of behavioural speci cations for a commongpameter

4.1.2 Connectors

As described above, components de ne their required and providieterfaces locally.
No shared interfaces can be used between two components, as ifterface one
component uses is not known to the other component. Hence thdearfaces might
have di erent names and method de nitions. For interconnecting aequired with a
provided interface, these interfaces and their methods need te Imapped. For the
required and provided services to be bound at assembly time, a cewstor must be
introduced.

The connectors are rst class entities in the proposed componemiodel. For map-
ping interfaces and methods, information about required and praed interfaces of
the components to be interconnected and their methods is needatfhen a method
of a required service or type is invoked, the connector maps thelld® an instance
of the provided counterpart. The mapping is transparent to the imolved compo-
nents. The mapping of formally described component interfaces datheir methods
allow for context-independent components. The components dothhave to share
interfaces for communication, but de ne their requirements locallyConnectors can
be extended to have arbitrary functionality. An extension of theteindard connector
has been implemented and is described in chapt2.2

The mapping information for connectors is given as key-value pairs @ prop-
erties le. In the exemplary mapping le shown in listing 4.5, the required service
org.example.lLoginis mapped to the servicerg.example.lAuthentication The types
are mapped accordingly. The remaining rows de ne method mappingetween the
services and types.

org.example.lLogin=org.example.Authentication

org.example.ILogin.login(java.lang.String,java.lang .String)=org.example.
Authentication.auth(java.lang.String,java.lang.Stri ng)
org.example.lLogin.getSessionData()=org.example.Aut hentication.getUser()

org.example.lSession=org.example.lUser

org.example.lSession.getSessionName()=org.example.l User.getSessionName()
org.example.lSession.getld()=org.example.lUser.getU sedld()
org.example.ISession.setLastLogin(java.lang.Date)=0 rg.example.lUser.

addLastLogin(java.lang.Date)

Listing 4.5: Example of a service and type mapping between two conmamts

4.1.3 Composition and Assembly

Hierarchical component architectures in the proposed model aemabled by com-
posite components. Primitive components implement their functioridy with Java



4 A Formal Component Model for OSGi 55

code, while composite components implement their functionality withhie instantia-
tion and binding of subcomponents. A subcomponent is referendeglthe composite
with a location and an instance name. They are then interconnecteslith connec-
tors. A delegate can be used for the composite component to pids or require
the services and types that a subcomponent provides or requirePelegates are
special types of connectors, which bind required interfaces of absomponent to
required interfaces of the composite or provided interfaces of abgomponent to
provided interfaces of the composite. The mapping information fdhe connectors
and delegates must be available within the composite component.

The subcomponents are also bundles in the OSGi Service Platformdacan thus
be accessed by all other bundles, regardless of an intended congmb hierarchy.
l.e., composite components do not completely hide their implementatiadetails, as
this would mean to hide the existence of the subcomponents. Whilegtllirect access
to subcomponents from other components is possible, such a getwuld break the
hierarchical composition of components.

A system assembly of a complete software system in the proposemmponent
model can be achieved in two ways. First, components may be instdlland in-
terconnected manually. The manual binding is described in chaptdr2.2 Second,
components can be declared the subcomponents of a compositemonent, which
contains the bindings and is deployed as a whole.

The example in listing4.6 shows the con guration le of a composite component.
The composite component has two subcomponents)yClient and myDir. Both
subcomponents have a relative location, i.e. the les representinige subcomponents
are deployed within the composite component. The location attribet accepts any
bundle location that Equinox accepts. In this example, a connectdretween the
componentmyClient and the componentmyDir is de ned, as well as a delegate
connecting the provided interfaces omyClient to the composite.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ? >

<msc:.component xmlns:msc="msc.proposal.system.entiti  es">
<subcomponent instanceName="myClient" location="./Cli ent_1.0.0.jar" />
<subcomponent instanceName="myDir" location="./UserDi r_1.0.0.jar" />

<connector required="myClient" provided="myDir" bindFi le="MSC-OPT/
innerBinding" />
<delegate provided="myClient" bindFile="MSC-OPT/deleg ations" />
</msc.component>

Listing 4.6: Example of a service and type mapping between two conmpamts

4.2 Implementation

A reference implementation of the proposed component model I05Gi was devel-
oped in the Equinox framework during this thesis. The Eclipse Equindkxamework
[Ecl10d is a wide-spread open source implementation of the OSGi speci at.

It is mainly used as the runtime platform for the Eclipse Integrated Bvelopment
Environment (IDE) [ Ecl10b.



4 A Formal Component Model for OSGi 56

4.2.1 Components and Interfaces

Primitive components in the proposed model are OSGi bundles with didional
meta data. This meta data consists of required, provided and conom parameter
interfaces, as well as a behavioural specication, and an instanoame. For rep-
resenting this information at run time, the interfaceBundle of the OSGi reference
implementation was adapted. Dierent methods for obtaining the inance name,
the names of the component interfaces, and the behavioural deption were added
to this interface. The implementation of this interface in Equinox is tle abstract
classAbstractBundle which is the foundation for a set of bundle types. This class
was adapted to read the component descriptors when the bundleingtialized. The
data read from the con guration le is stored in the bundle object,to serve the
methods that request the component interface de nitions and # behavioural de-
scription. Additionally, the constructor and its invocations were adpted to provide
an instance name to the bundle object.

For representing composite components, four methods controliithe life cycle of
the component had to be adapted. The methodstart, stop, uninstall, as well as the
constructor of AbstractBundle have been customized to consider subcomponents.
When a component con guration le de nes subcomponents, the anstructor of
AbstractBundle initializes the subcomponents before nishing its execution. Thus,
when a composite is installed, it autonomously installs its subcomporiserbefore
it nishes its own installation process. The same procedure was ingaced in the
methodsstart, stop, and uninstall.

Several methods were added to the interfadgundle due to the connectors. The
method getinstance(String) returns an instance implementing the provided or com-
mon parameter interface, that is referenced by the parameteiWith the method
getBindinglnstance(String) an instance of a binding class can be obtained, that
is de ned to bind the required or common parameter interface nardeby the pa-
rameter. When the methodgetinstanceis invoked on a primitive component, the
component rst tries tries to nd and instantiate the class that implements the ser-
vice de ned by the parameter. If the instance is a common paramnes, it is retrieved
by calling the providesMethodon the binding class of the common parameter. Com-
posite components have to use delegating connectors to get aviegr instance from
a subcomponent. Delegates are described in chapteR.3 The method getBindin-
glnstance works analogously for binding instances.

The methodsbind(String, Object) and unbind(String, Object) are used to bind
and unbind objects that de ne a required or common parameter sace. The rst
parameter is the name of the required service to be bound, while teecond parame-
ter is the object that implements that interface and thus represgs the service. The
method unbind needs to be called with the service object as parameter, to coveet
case that a component does not store a single instance, but a listsefrvice objects.

The command line interpreter of the Equinox command console was@ksxtended.
The install command now takes an instance name as optional parai@e \When no
instance name is given, the framework sets the instance name oé ttomponent to
be installed to the symbolic name of the bundle.



4 A Formal Component Model for OSGi 57

Interface Automata

The interface automata are implemented by a class structure thalirectly represents
the interface automaton's elements and their dependencies. A ddsterfaceAu-
tomaton contains references to sets @fctions, Steps and States of which one may
be an initial state. A utility class InterfaceAutomataUtils implements all necessary
computations described indAHO1], by using Java's Collections API.

4.2.2 Connectors

A connector in the implementation of the proposed model is an instae of theCon-
nector class. The connector class is responsible for binding provided sesvitstances
to requiring components and to perform the interface and methohapping.

Basic Connector

The classConnector implements three di erent connector types. The rst type
connects required interfaces of one component with the providederfaces of another
component. The second type connects the required interfacelsaosubcomponent
with the required interfaces of its composite. The third type conras the provided
interfaces of a composite with the provided interfaces of a subcponent. The last
two connector types implement the delegate functionality. The impteentation of
delegates is explained in chaptet.2.3

A connector binds components in a specic direction. The componethat is
connected to another component is stored as tHemBundle, while the component
it is connected to is stored as théoBundle. For performing the interface and method
mapping, the connector also stores the mapping information retued from the
properties le. When a connector is constructed, it requests theequired, provided,
and common parameter interfaces from the involved componentas well as the
behavioural speci cation. The connector also automatically comses the interface
automata of each mapped pair of interfaces, for later referenddowever, the result
of the automaton composition is currently not checked at run time.Finally, the
connector has a state, indicating whether it is bound or not.

The actual binding of a connector is executed in the methdaind. In this method,
a connector rst requests instances for all provided and mappendterfaces from the
toBundle by using the methodgetinstanceof the interfaceBundle, which represents
the component. The retrieved service instances are then wraghbé a dynamic
proxy [Sunl1Q with the mapping information.

A dynamic proxy class is a class implementing one or more interfacesiethis
speci ed at run time, without the need for prior generation of the lass. A proxy
class can be transparently used as an instance of the speci ed mfidees. When a
method is invoked on an instance of the proxy class, dnvocationHandler object
handles the method invocation. The method call is dispatched to a thed of the
InvocationHandler calledinvoke The parameters of this method are: the proxy ob-
ject that dispatched the method call, aMethod object re ecting the original method
call, and the actual parameters of the original method call as pareters. The re-



4 A Formal Component Model for OSGi 58

turn value of the method is anObject The object that this method returns is the
return value of the original method invocation on the proxy object

The concept of dynamic proxies is used in the reference implemertatt for wrap-
ping the provided services and types. Each instance of a providederiace is
wrapped with a dynamic proxy. The invocation handler of the proxy isan in-
stance of the clas®elegatinginvocationHandler The connector creates an instance
of this class with the provided service instance and the mapping asrpeeter. The
proxy object is de ned to implement the required interface. To aatally bind the
proxy object to the required service, the methodind(String, Object) is called on
the Bundle object of the requiring component. The service binding is depicted in
gure 4.7 for reference.

Component A Component B
A B
Binding Class |- =— '>_( O_<— — —] Implementing Class
2. bind("A", Proxy(B)) 1. getinstance("B")

Connector

Figure 4.7: The connector requests a service instance from theyding component
and binds it to the requiring component.

The DelegatinginvocationHandleiis responsible for the method and type mapping.
When a method is called on a required interface that is implemented by @oxy,
the method invoke of the DelegatinginvocationHandleris called. The handler rst
checks whether the method is mapped. If the method is not mappetthe original
method is invoked on the provided instance and the return value isttened to the
caller. This is the case when a method of the typ®bject is called on a provided
service or type, for example.

When the method is to be mapped by the connector, the handler tdoads
the mapped method from the provided interface class. Before aelly calling the
provided method, the parameters are checked for mapped typd$ a parameter is
of a mapped type, the object must be wrapped by a dynamic proxyith a new
instance of theDelegatinglnvocationHandler As this parameter is already a proxy
instance which will map the method calls or an object that is directly wble by
the requiring component, it needs to be wrapped by another proxystance that
reverses the mapping, and thus allows the provider to access thargmeter. After
the provided method is invoked on the original service, the returnype is checked
for a mapped type. If the type is mapped, the return value is also awpped with a
proxy for the requiring component to use.

The user can establish a connection between two components in tways: First,
the components can be embedded into a composite, which de nesanector be-
tween its subcomponents. Second, the Equinox command line canused to de ne a



4 A Formal Component Model for OSGi 59

connection. The commandnsc bind was implemented for this task. The command
Is to be called with the instance names of the components to be intermected, and
a location of a binding le as parameters.

RMI Connector

The Remote Method Invocation (RMI) [GJSB0J connector is an extension to the
basic connector. RMI provides a Remote Procedure Call (RPC) nfenism to Java,
allowing to invoke methods on objects which reside on another Javariial Machines
(JVM), on possibly remote hosts. In RMI, a server publishes objecwith a name in
an RMI registry. This registry can be queried by RMI clients, to nd djects under
the given name. For using the object, a client needs to know the imface that the
object implements. Additionally, this interface needs to ful Il certan requirements:

It has to extend the interfaceRemote and each method signature needs to declare
the exception typeRemoteExceptionto be thrown.

In the reference implementation of the proposed model, the RMI goector is sep-
arated into two main parts. The structure of a connection with theRMI connector
is depicted in gure 4.8 The classRMIProvider is used to publish interfaces in a
local registry. The classRMIConnectorClient is used to create a connection to the
registry and to obtain the desired object.

OSGi System Class Loader Providing Bundle's Class Loader Requiring Bundle's Class Loader OSGi System Class Loader
on host A on host A on host B on host B

<<interface>
<<interface>> Provided Service
Remote Interface

i ?

<<interface>>

RMIRemoteService ) ) Binding Class
Provided Service Impl

o T T

i Dynamic .
RMIR | ke — — 4 —|— 4 Proxy Object Class - == Connector
o< RMIRemoteServicelmpl ¥ Obj <€

<<interface>>
RMIProvider Required Service

Interface
\
\

RMIEnabled \ RMIConnectorClient
ComponentsRegistry \ — =|-17
\ -—--"

\ —

N

v L

RMI Registry

Figure 4.8: With the RMI connector, anRMIProvider publishes a provided service
object to a RMI registry. The service object is received by th&MI-
ConnectorClient, which binds the remote object to the binding class and
performs the method mapping.

The services to be published are on the RMI server side. As interéascof objects
that are published in the RMI registry need to extend the interfacdRemote the
classRMIProvider cannot publish the provided interfaces of a component. A proxy
object of the type RMIRemoteServicelmplis published instead, which implements



4 A Formal Component Model for OSGi 60

an interface with a methodinvoke which can be published to an RMI registry. The
parameters of this method are an object of the clasdethod re ecting the method to
be invoked, the parameter types and the actual parameters. Witthis information,
the proxy object invokes the desired method on the service obfec

OSGi uses a hierarchical model of class loading behaviour for bursdind the
framework. Each bundle has its own class loader and may accessdlass loaders of
the bundles providing its imported packages. As the framework de@ot import any
package, it cannot access the class loaders of bundles. RidIRemoteServicelmp]
which is implemented in the framework, can thus not directly call metbds on the
provided service implementation, because it cannot load the classtb& object to
be called. To resolve this issue, a subclass of the cl&gliRemoteServicelmplis
generated dynamically at runtime using Javassisthi98], a library for generating
classes and editing byte code at run time. The generated class is ledan the class
loader of the bundle, thus it may access the provided service cla3fie RMI enabled
service and a list of components providing interfaces with RMI is thepublished in
a RMI registry by the classRMIProvider.

The component requiring the remote service is on the client side ofetiRMI con-
nection. The classRMIConnectorClient extends the functionality of the Connector
by receiving component descriptors and service instances fromRNII registry. Just
as the basic connector, the RMI connector wraps the received taisces in dynamic
proxies for performing the method mapping. As the RMI connectoreceives in-
stances of the interfacé&kMIRemoteServiceinstead of service objects, the invocation
handler has to dispatch the method calls to the methothvoke These method calls
are then transported via RMI to the dynamically generated subclasof RMIRe-
moteServicelmplon the server side, which nally invokes the desired method on the
provided service.

In RMI, a method call with an object as parameter or return value hhat does
not implement the interface Remote, results in a call by value. l.e., the object is
serialized for the transport. Thus the provided implementation of grovided data
type, that is to be connected via the RMI connector, must implemerthe interface
Serializable The usage of the RMI connector is thus not transparent to therpviding
component.

The Equinox console was extended by the commamdsc provide rmi for pub-
lishing a component's provided interfaces in a RMI registry. The paraeters of this
command are the instance name of a component and, optionally, thert of the local
RMI registry. The command msc bind accepts a RMI URL (e.g. rmi://localhost)
as last parameter. If this parameter is given, the cla’8MIConnectorClient is used
for the connection, instead of the clas€onnector.

4.2.3 Composite Components

As explained in sectio4.2.2 a connector has one of three types. The rst type is
described in that section. The second type connects the requiretierfaces of a sub-
component with the required interfaces of its composite. The thirtype connects
the provided interfaces of a composite with the provided interfaseof a subcom-



4 A Formal Component Model for OSGi 61

ponent. Composite components are interconnected with their sabmponents with
these delegating connectors.

A provided delegate stores the interface and method mapping toeghsubcompo-
nent's provided interfaces. When the methogetinstanceis invoked on a composite
component, it recursively requests its subcomponents for an iasice of the interface.
Before each subcomponent is requested, the delegating conaetd the subcompo-
nent is used to map the composite interface name to the subcomgoiis interface
name. When a subcomponent is found that provides an instance fitre interface,
the instance is wrapped in a proxy class object that directly maps érequired in-
terfaces and methods of the requesting component to the proed interfaces and
methods of the subcomponent. Thus the mapping of the requirin@mponent to the
composite and from the composite to its subcomponent are sumnzad to create a
smaller stack of proxy objects. The methodjetBindinglnstanceworks analogously
with binding classes.

The composite component's methodsind and unbind use the delegating connec-
tors to nd a subcomponent providing a binding class for the requice service and
dispatch the method invocation the the corresponding subcompent after mapping
the name of the required interface.

4.3 Tool Support

The elements to be de ned for assembling an application in the propas component
model can be completely de ned in XML or properties les. Hence ngscial tools

are required for de ning components and assemblies. Howeverpt® could enhance
the e ciency of working with the component model in both phases: tadevelopment

time and at assembly time.

4.3.1 Development Time

At development time, primitive components are speci ed and impleméed. In the
proposed component model, the required, provided, and commoarameter inter-
faces are de ned in the component con guration le at developméntime. Ad-
ditionally, the behavioural speci cation of interfaces may be givensing interface
automata.

Interface De nition

For de ning interfaces within a component to be a provided, requigt or common
parameter interfaces, they must be referenced in the componeatescriptor le as
data type or service. This might be an error prone and complex taskn addition,
service interfaces may have structural references to data gpnterfaces that also
have to be considered. A tool could be used to identify interfaceadtheir depen-
dencies within the component, for de ning them as provided, requed, or common
parameters and to distinguish between service interfaces and daypes.

Several heuristics could be used to identify those categories autatically. Inter-
faces that are used but not de ned within a component may be reqed interfaces



4 A Formal Component Model for OSGi 62

or common parameters, while interfaces that are implemented ma Iprovided in-

terfaces. Data types could be distinguished from service interigby searching for
required or provided methods that take the interface of interesds parameter or use
it as return value. Interfaces that are never used as parameter return value might

be service interfaces, while the others might be data types. Whiledbke are just
heuristic criteria, an automatic identi cation of those categoriesdr interfaces may
help the architect to e ciently describe component interfaces withthe proposed
model.

Interface Automata De nition

Interface automata are de ned manually in XML les. These les maybecome
large and confusing when the automaton has many elements. A cleaucturing of
the document can help to clarify the structure of the automatonbut for a better
overview of the automaton, a graphical tool could be helpful.

4.3.2 Assembly Time

At assembly time, components are interconnected in system assdies and com-
posite components. The main tasks at assembly time are to nd corapents that
provide the functionality needed by other components, and to dee the interface
and method mapping for connectors.

Component Matching and Mapping Generation

The formal import and formal export of components leads to theeed for de ning
connectors that describe a mapping between the requiring and theoviding compo-
nent interfaces. Behavioural interfaces and types need to be ppeed as well as their
methods. In non-trivial systems these mappings may be very largend complex
to be created. A tool helps to de ne these mappings by using a set ariteria for
comparing interfaces and methods.

Several criteria may be used for comparing interfaces, and comigan has to take
place on three layers:

1. Components can be compared by comparing their interfaces
2. Interfaces can be compared by comparing their methods
3. Methods can be compared by comparing their signatures

Criteria for comparing methods are the return and parameter tyg@ matching as
well as the method name matching. The equality of method names aa indicator
of a good matching. The matching of the parameter and return tyg is another
indicator. If the parameter count and the parameter types of a ethod are the
same, the methods might have the same semantics. For type compan four cases
must be considered:



4 A Formal Component Model for OSGi 63

1. The types of the method in the provided and the required intertae are shared,
e.g. java.lang.String In this case the method types can be directly compared.
The types declared by the providing interface might be more speciasin a
type inheritance than those declared by the requiring interface.

2. The type is provided by the providing component and required byhe requiring
component. In this case the types can be directly compared to &éacther.

3. The type is required by both interfaces. In this case the type iatfaces might
be compared.

4. The type is provided by the required interface and required by thprovided
interface. In this case the types could be directly compared. Thistigation
should be avoided, as the architecture is a cyclic graph.

In the cases 2 to 4 the comparison of the type interfaces may leaald recursive
call of comparing types if the type graph is a cyclic graph.

Criteria for matching interfaces are the interface name matchinghe average of the
method matching value for the best matching methods, the methambunt matching,
and the behavioural compliance. The interface name might be an indior for
interface equality. In addition, the methods are indicators: the sae number of
methods in an interface provides information about a possible maidg, as well
as the average method matching value of the most matching methgdwhich is
computed by the criteria described above.

The behavioural compliance in terms of interface automata can bes ded by
1) Ab o\ AP (iFAp qj, i.e. the quotient of the number of external (input and
output) actions and the total number of actions of the product atomaton. The
result ranges from 1 for two completely compatible automata to O facompletely
incompatible automata. With this information, two components can i compared
by the matching values of their most matching interfaces: the avage behavioural
compliance, the average interface name matching and the averagethod matching
can be summarized to one comparison value.

The comparison criteria can be divided into hard and soft criteria. T type
comparison and the behavioural compliance are hard criteria thatn be formally
checked. The name matching is a soft criterion, i.e. the names can beecked
for direct equality or for semantical similarity. As the comparison dteria are not
validated empirically, other criteria may be of interest. The single créria also need
to be weighted.

An experimental tool has been implemented during this thesis to spprt the case
study explained in chapter5.1 The tool supports the architect at assembly time
by matching components and generating mapping con guration lefor connectors,
using the presented concepts. The user interface of the tool ivided into three
columns. In the left column, all bundles installed in the runtime are shan. If the
user selects a bundle, it is interpreted as a requiring component ags which all
other installed bundles are matched as providing components. Theatohing result
is shown in the upper table of the middle column. The lower tables in theiddle
column show the interfaces of the requiring component that are wently not bound



4 A Formal Component Model for OSGi 64

at run time and their unbound methods. When a providing componens selected in
addition to the requiring component, the right column shows the mating details,
including the most matching interfaces and the most matching methis of these
interfaces, as well as the corresponding matching results. Buti®on the lower right
corner allow for generation of a connector mapping le of all or seked interfaces.
The matching can be con gured using th&€€on guration menu which allows to de ne
weights for the single comparison criteria.

For the comparison of the interfaces, the matching program loadke compo-
nent interfaces of the components using their respective classdess. The content
of the interfaces and their method signatures are examined usingva's re ection
mechanisms.

Figure 4.9: In this screenshot of the experimental tool, the left kamn lists all in-
stalled OSGi bundles. For the component selected as requiring comap
nent in this column, in the upper third of the middle column the bundles
are shown with their matching value as providing components. The lewv
rows of the middle column show the interfaces of the requiring compo
nents that are currently not bound at run time. The right column slows
details how the matching value of the selected requiring and providing
component was computed. The buttons on the lower right allow forma
export of all or selected interfaces into a mapping properties le.



4 A Formal Component Model for OSGi 65

Graphical Assembly of Systems and Composites

Composite components consisting of several subcomponents rhaycomposed with
a tool that provides a component repository. An architect couldedect a set of
components to be subcomponents of a composite and intercortritbem within this
composite, directly storing the composite in the repository for o#r architects to
use. Such a tool could also be used to bind and unbind componentsa time.



5 Evaluation 66

5 Evaluation

In this chapter the proposed component model is evaluated. Thegposed model is
applied to a case study, in which an existing application's architectuns adapted to
a component architecture which is developed with the proposed cponent model.
The experiences and problems during the case study are discussechapter 5.1.3
In chapter 5.2 the identi ed features of formal component models, the OSGi com
ponent model, and the proposed model are evaluated with criteriarfthe usefulness
and applicability of engineering models de ned by SelicSEIO3, and the results of
this thesis are discussed.

5.1 Case Study

In the case study during this thesis, an existing application's architture was
adapted to a component-based architecture, implemented with ¢hproposed com-
ponent model. The adapted application is SyLaGen (Synthetischeakt-Generator)
[BSGTO03 SBG1(Q, a performance measurement and evaluation tool developed at
the working group \Speci cation of Software Systems" (S3) at te University of
Duisburg-Essen.

5.1.1 SyLaGen

SyLaGen is an application for measuring the performance of cliergrser applica-
tions. The server is used to de ne a workload for a target systenifhe work ow
consists of several weighted ows de ning user behaviour. The dhies are registered
at the server for receiving commands for load generation, which isopided by the
server in terms of the workload information and a class library to thelients. The
class library is the so-callecadapter and is used to access the target system. The
workload de nes how the client must use the adapter to generatédé load. The
clients consist of several worker threads for generating the laaBach worker thread
simulates a user. A measurement in SyLaGen consists of a workloadttis executed
by the workers. When the measurement is nished, each workerrgts the results of
the measurement to the server.

SyLaGen uses three di erent measurement modes:

Single: This mode starts a measurement with one walk through a owep
worker.

Ecstasy: In this mode all workers generate as much load as posslleepeat-
ing to run ows for a prede ned measurement time.



5 Evaluation 67

Exploration: This mode can be used to test the scalability of a systemA

measurement starts with a low number of workers. If the perforamce values
of the target system do not reach a specied level, the number ofovkers is
increased after a prede ned time. When the speci ed performaacvalues of
the system are reached with a certain number of workers, the tolmund the

maximum number of simulated users for the desired performance.

Figure 5.1 shows the architecture of SyLaGen. The server is callddaster.

O/ O O 7N Adapter
/ N Load O O - P \\
O/O Generation \\ ~ invoke System under
Strategy Q\O Adapter > test
\ | ——>1| Load Model
controls
Platform Worker
Master Client

Figure 5.1. SyLaGen consists of a server, the so-callbthster and clients. The
Master o ers a platform for a behavioural model representing a &l
generation strategy. Several clients are controlled by the MasteEach
client has a number of worker threads which generate the load acdimg
to the load generation strategy submitted by the Master. The sysm
under test can be accessed by using adapters which are Java liar
sent to the clients by the Master along with the load generation sttagy.
[SBG1Q

The SyLaGen Master is implemented as an Eclips&dl10b application, making
use of the features the OSGi Service Platform implementation Equr [Ecl10d,
which is the basis for the Eclipse Platform, and has also been used ifaplementing
the proposed component model for OSGi. The SyLaGen Client is implented as
a Java Application. Both Applications share a common library, which agtains the
main data types and common parts of the communication functionajit The original
architectures of the programs is depicted in gur&.2 Both programs, the SyLaGen
Master and client are implemented in a layered architecture. The M#&s consists
of four modules. The modulecommon de nes most of the data types used in the
system and includes functionality for network communication. Theare module of
the Master includes most of the Master's functionality. It uses thenodule State
Machine for controlling the measurement. The user interface is used to dool the
Master. The client consists of three modules. The core module implents the main
functionality, and relies on the modulecommonfor the most data types and network
communication functionality. For generating load, an adapter impleentation is
given to the client.

The communication between Master and clients is managed by a progtary com-
munication library which strongly uses Java Architecture for XML Birding (JAXB)
[Sun094 for serializing and deserializing objects into XML documents.



5 Evaluation 68

Figure 5.2: The SyLaGen Master consists of four modules. The con®dule imple-
ments most of the functionality. The client has three modules, of vith
the core module also implements most of the functionality. The module
commonis used in both applications.



5 Evaluation 69

5.1.2 Changes to the Architectures

Master and client are implemented as monolithic applications with a layed archi-
tecture. They share a library calledcommon Their structure had to be changed to
represent a component architecture. The applications were splib tan architecture
where each component has a high cohesion with the goal to createsely coupled
components.

The Master's adapted architecture is divided into seven componenas shown in
gure 5.3 Since the master had a layered architecture, several servicesl dypes
are used within many classes of the application. These services agpes are now
provided by their respecting components, and are de ned as reged services and
types by the components using them. Several services and typesre speci ed as
common parameters for several components. These connedi@me indicated by
the solid arrows in gure 5.3 The dashed arrows indicate connectors mapping with
only required and provided interfaces. The component architeat of the client is
shown in gure 5.4. The client application is divided into ve components.

XML
Measurement = — — —

, 7~ XML N
Reporting \
/ \
/ 7 AN \
/ v L - \ |
XML
XML / ‘ ul \ |
Common ' [~ \ |
~
| N ~ \ |
v N N \
XML N \ /
Validati
alidation N /
\ !
! Wy
XML N XML
Control Connector

Figure 5.3: The adapted architecture of the Master consists ofv@&n components.
The connectors are represented by arrows. Solid arrows renetscon-
nectors handling mostly common parameters, dashed arrows indiea
connectors handling just mostly required-provided relationships.The
componentcommon is reused in the client's architecture. The compo-
nent interfaces are not notated in this gure.

5.1.3 Experiences and Problems

The implementation of the case study's application with the proposedomponent
model indicated issues with the model's reference implementation, ssme types
were not mapped correctly. These issues could be resolved by adersng a set of
special cases, e.g. arrays as parameters of methods de ned iavited or required



5 Evaluation 70

XML XML
I Worker & |

ul
Execution >

XML
Connection

XML
Adapter

XML
' Common

Figure 5.4: The adapted architecture of the client consists of veornponents. The
component interfaces are not notated in this gure.

interfaces. These special cases were then considered in the dizsegationinvoca-
tionHandler.

All mapping les for the connectors between the components wegenerated with
the experimental tool, which reliably suggested matching requirednd provided
interfaces and their methods between components. The applicatiof the experi-
mental tool helped greatly to reduce the workload for creating nteod and interface
mappings. E.g., the mapping le between the measurement and Ul cponent
consists of a total of 367 generated lines. Writing these mapping demanually
would be a considerable workload. The estimated values for criteriaights, which
are currently set as default values in the tool, reliably identi ed the iterfaces and
methods intended to match. However, the tool can still be enhaed. Some more
special cases like generic types and array types as method partareeand return
values cannot be matched perfectly. This drawback did not have ampact on the
automatic interface and method mapping in the case study, but the is still room
for improvement.

Adapting the architecture of SyLaGen to a component architecte proved to be
harder than expected. As indicated in gures5.3 and 5.4, an OSGi bundle had
to be added to the Master's and the client's architecture, which ho&lthe XML
communication classes and all dependencies, including many datadgpused in the
entire application. This bundle is represented as a rectangle in the pgr left corner
of the components in the gures. All components depend on this da library. The
application heavily relies on JAXB for communication. The functionalityof this
connection could not be implemented in a component, because JAXEReaUs the
implementation class de nitions of the objects to serialize. If the da types had
been de ned as required or provided types, the objects given tAAXB would be
instances of interfaces. These objects cannot be serialized byXB\ Thus the XML



5 Evaluation 71

library contains the communication functionality using JAXB and all neessary data
types. As each component uses these data types, they must impbe class library.
Thus the components are not context-independent.

It would be possible to create a JAXB component that uses provideand the
same required data types for serialization and deserialization, butsitusage would
be limited to exactly the provided data type objects. A universal JXB component
would need to rely on dynamically compiled classes from a universal vggd data
type. While this would be possible, the JAXB component would have taxéend the
original JAXB functionality dramatically. This shows that existing frameworks and
programming models might need to be considered in component modaisl their
application. Patterns for di erent programming models and their r@resentation in
component models could help to systematically derive a componentigtture from
existing applications and libraries.

Another architectural issue were cyclic dependencies. For exaepwvhen the user
interface needs to be noti ed about changes in the data it shows,hias a dependency
on the data types to be shown, and provides an observer servicgenface, which will
be noti ed about changes in the data. Even when a control compent is introduced,
like it is known for the Model-View-Controller (MVC) pattern [GHJV94], the user
interface component and the data have direct or indirect dependeies on each other.
While there is no class-based dependency, there is still an architee@tl cycle, because
the observer, known from the observer patternrdHJV94], needs a reference to the
observable, and the observable needs a reference to the obeerv

A usual case of these dependencies led to method calls on requirgerfaces that
take a provided interface as parameter. One example for that @ the user inter-
face component, which requires a data type and provides an obasrinterface. The
component containing the data type provides the data type inteaice and requires
an observer to notify. In these situations method calls with a straare of required-
DataType.create(providedObserverTypeare invoked, in which a provided type is
given as parameter of a required method. These cases could beexbby declaring
both interfaces, in this example theequiredDataTypeand the providedObserverType
as common parameters, so both types are required and provided.

One initial goal for the implementation of the component model wasava 1.4
compatibility, for not constraining the compatibility of the OSGi platform. This
goal could not be ful lled. The mapping of Collection and Map classes viitgenerics
class parameters in the parameter or return type de nitions of coponent interfaces
raised the need to use APIs introduced with Java 5, for generics iwdantroduced in
this version. For example, a return typeHashMap<MyProvidedTypexeeds to map
the generic class parameter of the map. Without using the operatis for generics,
the implementation would not be able to see the interface type of thabjects included
in the instance ofHashMap

5.2 Discussion

In this section the results of this thesis are discussed. First, crita for the useful-
ness and applicability of engineering models are applied to the featsref formal



5 Evaluation 72

component models identi ed in chapter2, the OSGi component model described in
chapter 3 and the proposed component model for OSGi de ned in chaptdr Then
the advantages and disadvantages of the proposed componerdadal compared to
the OSGi component model are discussed.

5.2.1 Criteria for Model Evaluation

The proposed component model is an engineering model purposeddrchitectural
descriptions of software systems. Selic describes ve key chaeaistics for engineer-
ing models 5el03:

1. Abstraction: The model should provide an abstract view on thectual system,
hiding unnecessary information. This abstraction should help focang on the
relevant parts.

2. Understandability: The model should provide the contained infonation in an
intuitive way, reducing the intellectual e ort needed to understaml the facts
represented by the model.

3. Accuracy: The information carried by the model should be true it respect
to the modeled system.

4. Predictiveness: The model should provide a possibility to predict@perties of
the real system that are not obvious. Prediction can e.g. be achex/through
formal analysis of the model or experimentation.

5. Inexpensiveness: The development of the model must be cherathan the
development of the actual system.

Abstraction

Abstraction is achieved by several concepts of formal compomnenodels. First, in
formal component models the implementation of primitive componesitis typically
hidden, providing an abstract view on the actual system. Additiony, composite
components allow for specifying greater building blocks with hidden ingmentation
details. These concepts provide an abstract view on the system.

An architecture in the OSGi component model consists of sevetalndles that im-
port and export packages, and service objects that are publishender an interface
name in a service registry. OSGi does not provide concepts for abastion. For un-
derstanding the architecture of an application, each componenth to be inspected
separately for interconnections. Composite components canrmd de ned.

The proposed component model provides abstraction of the sgst architecture
by explicitly specifying the component interfaces in a component c@uration le.
The actual implementation of components is not necessary to desran architecture.
Composite components allow for hierarchical abstraction of the @ritecture, hiding
the implementation details of subsystems.



5 Evaluation 73

Understandability

The main information carried by formal component models is the congpent speci-
cation and their interconnection. In the actual system, this infamation is not ex-
plicitly stated. Component interconnection may consist of many clases, interfaces
and associations or class hierarchies. By hiding these details, thedarstandability
is increased. However, as di erent component models have distinepresentations
of components and their interconnections, the understandabilityaries between the
models.

The information provided by the OSGi component model are distritted in the
source code and the bundle manifest le. While the import and expof packages
is directly de ned, the usage of these interconnections and therstture of the
overall architecture are considerably hard to understand, as¢hinformation is widely
distributed.

The component speci cation in the proposed model is given in a comment con-
guration le, containing the necessary information for understading the architec-
tural role of the component in XML. The interconnections of subgoponents of a
composite are de ned in the con guration le of the composite, alog with their
mapping le. These mapping les are simple properties les. As they mig become
very large, they are not very intuitive, and nding a speci ¢ piece ofinformation in
these les can be hard.

Accuracy

The formal component models considered in this thesis are used ®rk an archi-

tecture prior to its implementation. While some implementations of thee models
allow for a code generation, changes in the code that in uence theténconnection

or speci cation of components are usually not re ected in the modleThe examined
formal component models do not provide means to check whethéetactual system
complies with the architecture.

The information provided by the OSGi component model is used by ¢hruntime
engine to interconnect the bundles and share objects using thewsee registry. How-
ever, this information does not describe the actual architecturat run time, as the
source of imported packages is e.g. not explicitly de ned. The soerof a service
object can also not be identi ed unambiguously.

The proposed component model accurately speci es componetdagheir context,
by explicitly naming required and provided services and types. Howay the com-
ponent interconnections in a system assembly is not necessarily aésged. While
composite components de ne their interconnections within the coponent con gu-
ration le, the possibility to interconnect components using the Equnox command
line allows for architectures that are not speci ed in a document orle, but only
exist at run time.

Predictiveness

As formal component models have di erent foci, their predictiverss varies. Palladio
can be used to predict performance properties for example. As KBER is an in-



5 Evaluation 74

termediate language for systematically generating analysis modedsrh component
models, it can be indirectly used for predicting several propertiesmcluding per-
formance. Formal component models are used to describe comganarchitectures
prior to their implementation. Thus the functional correctness otomponent inter-
connections can be evaluated before they are actually bound. Tfemal founding
of these component models also allow for formally checking intercamtions. In ad-
dition to checking structural compliance, allows to formally check the compliance
of two behavioural speci cations in terms of path expressions.

The OSGi component model does not provide means to predict whet an archi-
tecture has speci c properties or if it is applicable. As the OSGi congment model
does not provide information about component interconnection for to run time,
predictions are impossible.

In contrast to the OSGi component model, the proposed model as to de ne
an architecture without actually implementing it. Thus the functiond applicability
of an architecture can be predicted by checking the interface amdethod mappings
of the connectors. The compiled Java interfaces provide formalfammation about
the architecture together with the component and connector sgi cations. This
information can be used for formally checking the satisfaction of ¢hrequirements
and the applicability of interconnections, prior to a system's implemeation. The
behavioural description of component interfaces based on int@ce automata ad-
ditionally allow to predict whether the components' usage assumptis for their
interfaces are ful lled by the interconnection.

Inexpensiveness

Except and UML, none of the considered component models allow fa detailed
speci cation of the implementation. They do not need implementatiordetails for
modeling an architecture. Thus an architecture in a formal compamt model is
less expensive than an architecture implemented in source codecdnese the formal
description is an abstract view on the system, hiding information thas unnecessary
when an architecture is assembled.

The architectural information in the OSGi component model is distbuted in
the implementation of the bundles and in their manifest le. For develping an
architecture with OSGi, the system has to be implemented.

With the proposed component model, an architecture can be speed prior to the
system's implementation. Instead of de ning the software architdure by classes and
their associations in the source code, each component and theirirtonnections can
be speci ed in con guration les and by implementing their required aml provided
interfaces. Hence the speci cation of an architecture in the prased model is less
expensive than specifying the architecture in the implementation.

5.2.2 Evaluation Summary

The proposed component model has several advantages to th€@& component
model. For example, it allows for specifying the architecture prior tonplementation,
and provides a better abstraction than an architecture implemest with OSGi. As



5 Evaluation 75

a result, the functional correctness of the architecture can hehecked with tools, by
nding unsatis ed requirements before the system is implemented.

However, the proposed component model does not provide thesahction and
understandability of formal component models. When a system in ¢hproposed
model is assembled by using the command line, the component intarnections
are not traceable. Formal component models then provide a bettenderstandable,
abstract view on the complete system.

The considered formal component models in contrast lack the acaay of the
proposed model if they are not used by the runtime as actual atitbcture de ni-
tion. When the models are used for description only, or for code geation, the
compliance of the system with the architecture is not ensured.

While the proposed component model lacks some of the advantagdsformal
component models, it states the architecture more accurately drexplicitly than
the OSGi component model, and it provides more means for prediatiof the archi-
tectures functionality. The proposed model also provides a bettanderstandability
by using a single point of con guration per component. The abstréion of imple-
mentation details for primitive and composite components is also notr@vided by
the OSGi component model.



6 Related Work 76

6 Related Work

This chapter provides information about work related to the contet of this the-
sis. Formal component models are self-contained languages whichynde ne a
representation in the Java language. Several approaches to \gde richer modu-
lar or component concepts in Java exist. In contrast to formal coponent models,
these approaches aim to specify component semantics for the dddanguage. The
approaches can be roughly categorized in two categories: langeiaxtensions and
frameworks. In this chapter, some of these approaches aregaeted and their scope
is de ned.

6.1 Frameworks

The Java Enterprise Edition (JEE) [Sun09f is the standardization of an enterprise
platform for the Java programming language. JEE allows to write seer-side appli-
cations. The widely-known component model of the JEE speci cativare Enterprise
Java Beans (EJB) fun09¢. The component type in EJB is called éSession Bean
Dependencies in EJBs are declared by Java interfaces and annaias. An instance
of the desired component is then injected by a framework directlyotthe eld in
the requiring class. The model also uses a shared interface apptgavhich leads
to tightly coupled component through type de nitions. Thus contet independence
is not possible. Additionally, this component model facilitates a at component
hierarchy, as no composite components exist. Behavioural camshts may be im-
plemented with so-called interceptors that may intercept each calb a session bean.
However, behavioural constraints cannot be speci ed descripély for checking the
compliance of two constraint de nitions.

The OSGi Blueprint Container, which is specied in the OSGi Service Go-
pendium [OSGO091, is a standardization of Spring Dynamic ModulesJpr1(d. The
Blueprint Container provides a dependency injection frameworkt treates instances
of service objects and injects them into a service user using a gthinterface. This
adds a third party, the injection framework, to the service modelbut does not se-
mantically enhance the OSGi service concept. The OSGi Declarati8ervices, which
are speci ed in the same document as the OSGi Blueprint Containeand Apache
Felix iPOJO [Apal(Q] are di erent approaches to this concept.

CORBA and its CORBA Component Model (CCM) [Obj06€] is a practice-driven
approach for representing components in programming languagel the CCM,
components are de ned in an own language, which is independentrfrache appli-
cation's programming language. With CORBA it is possible to create andter-
connect components written in di erent programming languages. @GRBA de nes
a language independent framework that allows for communication taeen its com-



6 Related Work 77

ponents. Components have required interfaces, but no connacexists as rst class
entity to interconnect components. Thus components are not ntext-independent.
In addition, hierarchical component structures are not realizableith the CCM.

6.2 Language Extensions

ArchJava [ACNOZ2] is an ADL expressed in an extension of the Java programming
language. In ArchJava the architecture is de ned with the applicabn source code.
Components in ArchJava are declared similar to classes, but use tbhemponent
keyword instead ofclass A component also de nes required and providegorts, i.e.

a collection of methods.Connect statements are used to interconnect the ports of
two components. Components in ArchJava communicate throughopts, which must
be binary compatible. Thus context independence is not given in Ardhva. Also,
as ArchJava is an extension to the Java language, the ArchJavarapiler is needed
to compile the programs developed with this technology. Thus a pragm cannot be
part of an architecture without being recompiled by the ArchJava @ampiler.

Jiazzi [MFHO1] is also a component system for Java. The concept of Jiazzi di ers
from the usual component concept in that the means of communitan between
component are not interfaces but instead whole packages includiagstract Java
classes are shared between the components. Each componemtedeso calledatoms
that contain references tqackage signatureglescribing the content of the referenced
package. The imported classes can be instantiated by the importicgmponent. The
instantiation of an abstractly de ned imported class results in an insntiation of
the concrete class bound to this abstract requirement. This bodrclass is a subclass
of the shared one. The abstract classes contained in those paygs can also be used
by the importing component by creating own classes that inherit fira the imported
ones, to create own instances of the shared class. As the congras need to share
packages, complete context independence is not possible.



7 Conclusion 78

7 Conclusion

Component-based software engineering (CBSE) and adjacenptos have been sub-
ject to research for decades. Creating software architectgréom scratch using one
of the several academic component models seems to be well urtdeis As some of
these component models are even formally founded, these langesagllow for simu-
lation or analysis of the software architecture before the systeis built. Though the
component-based architecture concept is well-understood anddied up by formal
reasoning over attributes, the bene ts of the long research camardly be used in
practical component frameworks in modern programming languagje The current
languages and frameworks do not leverage the research resuftthe past years.

This thesis aims at resolving this problem by rst comparing formal cmponent
models to identify the core features. The identi ed features areompared to the
component model of the OSGi Service Platform, a practice-drivemodule frame-
work that is considered a standard component framework for Jav The results of
this comparison are used to create a proposal for a new companerodel for the
OSGi Service Platform that implements the identi ed features of fonal component
models. The proposal and its reference implementation is evaluateda case study
that shows the applicability as well as some weaknesses of the pregd component
model.

The proposed component model has several advantages oves tiriginal OSGi
component model. In the proposed model, the architecture is cléaistated and
thus traceable, which improves understandability. Abstractionshrough composite
components allow for e ciently specifying even very large systemsyithout losing
the understandability of the complete architecture. In contrasto the original OSGi
component model, the proposed model allows to specify an architee prior to the
system's implementation.

While this thesis focuses on the functional aspects of softwarechitectures, the
speci cation of quality attributes is not considered. This could be adressed in
future work. The experimental tool which was developed during th thesis covers
the generation of connector con guration les and nds unboundrequirements of
single components. Other starting points for tool support which &re introduced in
chapter 4.3 and include formal checking of interconnections and their behavial
descriptions, as well as tools for graphically composing componengtarchies, are
also left for future work.

In conclusion, this thesis provides a deep examination of the main feges of
formal component models, and a starting point for further comp#son with practice-
driven component frameworks. The initial goal of adapting the coppnent model
of a framework to support the identi ed features could be ful lled ad con rmed
in a non-trivial case study. In addition, this thesis deals with a techology that is
currently strongly in the focus of Java development, as the integtion of OSGi as a



7 Conclusion 79

component standard in Java is currently under discussion by the @ community.
Hence the results of this thesis might be considered in the developihef component
models for current or future programming languages.



Bibliography IX

Bibliography

[ACNO2] Jonathan Aldrich, Craig Chambers, and David Notkin. Archiectural
Reasoning in ArchJava. Inin Proceedings of the 16th European Confer-
ence on Object-Oriented Programmingpages 334{367. Springer Verlag,
2002.

[AG97] Robert Allen and David Garlan. A Formal Basis for Architectual
Connection. ACM Trans. Softw. Eng. Methodol, 6(3):213{249, 1997.

[Apall] Apache Foundation. Apache Felix - Apache Felix iPOJO, Febauy
2010. http://felix.apache.org/site/apache-felix-ipojo.htm I,
accessed at 16 March 2010.

[BDH"98] Manfred Broy, Anton Deimel, Juergen Henn, Kai Koskimies, Frasek
P&sil, Gustav Pomberger, Wolfgang Pree, Michael Stal, and Clemes
Szyperski. What characterizes a (software) component?Software -
Concepts & Tools 19(1):49{56, June 1998.

[BHPOG] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. SOFA 2:0Bal-
ancing Advanced Features in a Hierarchical Component Model. In
SERA '06: Proceedings of the Fourth International Conferere on Soft-
ware Engineering Research, Management and Applicatignzages 40{
48, Washington, DC, USA, 2006. IEEE Computer Society.

[BPO4] Tomas Bures and Frantisek Plasil. Communication Style Driven @h-
nector Con gurations. In LNCS3026, ISBN 3-540-21975-7, ISSN 0302-
9743 pages 102{116. Springer-Verlag, 2004.

[BSGTO03] Reinhard Bordewisch, Brbel Schvarmer, Michael Goedicke, and Peter
Trepfner. Lastsimulation #ir Anwendungsumgebungen in vernetzten
IT-Architekturen. Mitteilungen der Gl-Fachgruppe MMB 43, 2003.

[CFGGR91] Joachim Cramer, Werner Fey, Michael Goedicke, and Mar Gro e-
Rhode. Towards a Formally Based Component Description Language
In TAPSOFT '91: Proceedings of the International Joint Confeence
on Theory and Practice of Software Development, Volume 2: Ad
vances in Distributed Computing (ADC) and Colloquium on Cobin-
ing Paradigms for Software Developmemnt (CCPSDpages 358{378,
London, UK, 1991. Springer-Verlag.

[Chi98] Shigeru Chiba. Javassist - A Re ection-based Programming i2ard for
Java. In Proceedings of the ACM OOPSLA'98 Workshop on Re ective
Programming in C++ and Java, October 1998.



Bibliography

[CHPRO9]

[CS01]

[dAHO1]

[Ecl10a]

[Ecl10b]

[Ecl10c]

[GHIV94]

[GJSBO5]

[GMRS08]

[GMS05]

[HopOO]

[How96]

Ondej Cerry, Petr Hesek, Michal Papez, and \aclav Remes. SOFA
2 Component System: User's Guide, 2009ttp://sofa.ow2.org/
docs/pdffusers_guide.pdf , accessed at 9 December 2009.

Philip T. Cox and Baoming Song. A Formal Model for Component
Based Software. InProc. IEEE Symposia on Human Centric Comput-
ing Languages and Environmenf2001.

Luca de Alfaro and Thomas A. Henzinger. Interface Autoata. In Pro-
ceedings of the Ninth Annual Symposium on Foundations of Seére
Engineering (FSE), ACM, pages 109{120, 2001.

Eclipse Foundation. Eclipse Modeling - EMF - HomePage, 2010.
http://www.eclipse.org/modeling/emf/ , accessed at 7 March 2010.

Eclipse Foundation. Eclipse website, 2010http://www.eclipse.
org/ , accessed at 14 March 2010.

Eclipse Foundation. Equinox, 2010. http://www.eclipse.org/
equinox/ , accassed at 14 March 2010.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides. Design patterns : Elements of Reusable Object-Oriented Sof
ware. Addison-Wesley, Reading, Mass. [u.a.], 1994.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
Java™ Language Specication, The 3rd Edition Addison-Wesley
Professional, 2005.

Vincenzo Grassi, Ra aela Mirandola, Enrico Randazzo, ar&htonino
Sabetta. KLAPER : An Intermediate Language for Model-Driven Pe-
dictive Analysis of Performance and Reliability. InThe Common Com-
ponent Modeling Examplevolume 5153/2008, pages 327{356. Springer
Berlin / Heidelberg, 2008.

Vincenzo Grassi, Ra aela Mirandola, and Antonino Sabettdzrom De-
sign to Analysis Models: a Kernel Language for Performance andlRe
ability Analysis of Component-based Systems. IdVOSP '05: Proceed-
ings of the 5th international workshop on Software and perfoance,
pages 25{36, New York, NY, USA, 2005. ACM.

Jon Hopkins. Component Primer. Communications of the ACM
43(10):27{30, 2000.

T. Howes. A String Representation of LDAP Search Filter&FC 1960,
June 1996. http://www.ietf.org/rfc/rfc1960.txt , accessed at 23
March 2010.



Bibliography Xl

[InfO3] Information Technology for European Advancement. ROBCOP:
Robust Open Component Based Software Architecture for Con-g
urable Devices Project, Deliverable 1.5 - Revised specication of
framework and models, July 2003.http://www.hitech-projects.
com/euprojects/robocop/deliverables.htm , accessed at 2 Febru-
ary 2009.

[1ISO06] ISO. Information technology - Programming languages - G#Sep.
2006. ISO/IEC 23270:2006(E).

[Kar09] Karlsruhe Institute of Technology (KIT) and Research Ce-
ter for Information Technology (Forschungszentrum Informak,
FZI). Palladio Component Model - Wissensbasis, Decem-
ber 2009. http://sdqweb.ipd.kit.edu/mediawiki/index.php?
titte=Palladio_Component_Model&oldid=17844 , accessed at 23
March 2010.

[MBG10]  Marco Meller, Moritz Balz, and Michael Goedicke. Representing For-
mal Component Models in OSGi. In Gregor Engels, Markus Luckey,
and Wilhelm Schefer, editors, Software Engineering volume P-159 of
LNI, pages 45{56. GlI, February 2010.

[MDEK95] Je Magee, Naranker Dulay, Susan Eisenbach, and Je Kamer. Spec-
ifying Distributed Software Architectures. Lecture Notes in Computer
Science 989:137{153, 1995.

[MFHO1] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. Jiazzi: NewAge
Components for Old-Fasioned Java. IMODOPSLA '01: Proceedings of
the 16th ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applicationpages 211{222, New York, NY,
USA, 2001. ACM.

[Obj06] Object Management Group. CORBA Component Model Specation,
Version 4, April 2006. http://www.omg.org/cgi-bin/doc?formal/
06-04-01, accessed at 30 December 2009.

[Obj08] Object Management Group. Common Object Request BrekArchitec-
ture (CORBA) Speci cation, Version 3.1, Part 1: CORBA Interfaces.
Technical report, Object Management Group, January 200&ttp://
www.omg.org/spec/CORBA/3.1/Interfaces/PDF/ .

[Obj09a] Object Management Group. OMG Uni ed Modeling LanguagéOMG
UML), Infrastructure, Version 2.2, February 2009. http://www.omg.
org/spec/UML/2.2/Infrastructure , accessed at 22 December 2009.

[Obj09b] Object Management Group. OMG Uni ed Modeling LanguagéOMG
UML), Superstructure, Version 2.2, February 2009http://www.omg.
org/spec/UML/2.2/Superstructure , accessed at 22 December 2009.



Bibliography Xl

[OSG09a] OSGi Alliance. OSGi Service Platform Core Speci cation Rake 4,
Version 4.2, June 2009.

[OSG09b] OSGi Alliance. OSGi Service Platform Service Compendium |B&se
4. Version 4.2, Agust 2009.

[Par72] D. L. Parnas. On the Criteria To Be Used in Decomposing Syshs
into Modules. Communications of the ACM 15(12):1053{1058, De-
cember 1972http://sunnyday.mit.edu/16.355/parnas-criteria.
html, accessed at 26 March 2010.

[Pro10] ProSyst Software. OSGi services and embedded Java witlhome,
vehicle and mobile devices, 2010http://www.prosyst.com/index.
php/de/html/content/132/Products-List/ , accessed at 7 March
2010.

[RBH"07] Ralf Reussner, Steen Becker, Jens Happe, Heiko Koziolek, Ka
Krogmann, and Michael Kuperberg. The Palladio Component Model.
Technical report, University of Karlsruhe (TH), May 2007.

[Sam97] Johannes Sametinger.Software Engineering with Reusable Compo-
nents. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

[SBG10] Michael Striewe, Moritz Balz, and Michael Goedicke. SyLaGe An
Extendable Tool Environment for Generating Load. In Bruno Miller-
Clostermann, Klaus Echtle, and Erwin Rathgeb, editorsProceedings
of "Measurement, Modelling and Evaluation of Computing Skesms"
and "Dependability and Fault Tolerance™" 2010, March 15 - 17Essen,
Germany, volume 5987 olLNCS, pages 307{310. Springer, 2010.

[SDK*95] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross,
David M. Young, and Gregory Zelesnik. Abstractions for Software
Architecture and Tools to Support Them. IEEE Trans. Softw. Eng.,,
21(4):314{335, 1995.

[See87] S. SeehuselDetermination of Concurrency Properties in Modular Sys-
tems with Path ExpressionsPhd thesis, University of Dortmund, De-
partment of Computer Science, 1987. (in german).

[Sel03] Bran Selic. The Pragmatics of Model-Driven DevelopmentlEEE
Softw, 20(5):19{25, 2003.

[SG94] Harald Schumann and Michael Goedicke. Component-Orietht&oft-
ware Development with PI. Technical Report 1/94, Speci cation of
Software Systems, Department of Mathematics and Computer iBace,
University of Essen, 1994.

[Spr10] Spring Source. Spring Dynamic Modules for OSGi Service Rtains,
2010. http://www.springsource.org/osgi , accessed at 16 March
2010.



Bibliography X1

[Sun07] Sun Microsystems. JSR 291, Dynamic Component Suppant JavaTM
SE. Technical Speci cation, 2007 http://jcp.org/en/jsr/detail ?
id=291, accessed at 30 December 2009.

[Sun09a] Sun Microsystems. JSR 222, Java Architecture for XMLiling
(JAXB) 2.0. Technical Speci cation, 2009.http://jcp.org/en/jsr/
detail?id=222 , accessed at 23 March 2010.

[Sun09b] Sun Microsystems. JSR 316, Java Platform, Enterpriselifton 6 Spec-
i cation. Technical Specication, 2009. http://jcp.org/en/jsr/
detail?id=316 , accessed at 23 March 2010.

[Sun09c] Sun Microsystems. JSR 318, Enterprise JavaBeans,Sian 3.1. Tech-
nical Speci cation, 2009. http://jcp.org/en/jsr/detail?id=318 ,
accessed at 23 March 2010.

[Sun10] Sun Microsystems. Dynamic Proxy Classes, Java SE Docuataéon,
January 2010. http://java.sun.com/javase/6/docs/technotes/
guides/reflection/proxy.html , accessed at 7 March 2010.

[Szy02] Clemens Szyperski.Component Software: Beyond Object-Oriented
Programming Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.



Eidesstattliche Erklarung XV

Eidesstattliche Erkl arung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne Hilfe Dritt@&ind nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt habe. Ich hahblle Stellen, die
ich aus den Quellen wrtlich oder inhaltlich entnommen habe, als solche kenntlich
gemacht. Diese Arbeit hat in gleicher odeahnlicher Form noch keiner Pafungsbe-
herde vorgelegen.

Essen, 26. Mirz 2010



	Figures
	Listings
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Basics
	1.3 Thesis Outline

	2 Formal Component Specifications
	2.1 Component-based Software Engineering
	2.2 Palladio Component Model
	2.2.1 Interface Definition
	2.2.2 Component and System Definitions
	2.2.3 Deployment and Simulation
	2.2.4 Example

	2.3 The  language
	2.3.1 Component Interface Specification
	2.3.2 Component Implementation

	2.4 SOFA 2
	2.4.1 Frame and Interface Definition
	2.4.2 Connector and Architecture Definition

	2.5 UML Composition Diagram
	2.5.1 Interface and Component Definition
	2.5.2 Connection Definition
	2.5.3 Graphical Notation and Example

	2.6 UniCon
	2.6.1 Component Definition
	2.6.2 Connector Definition
	2.6.3 Component Interconnection
	2.6.4 System Configuration
	2.6.5 Example

	2.7 KLAPER
	2.7.1 Component Definition and Assembly

	2.8 Comparison Summary
	2.8.1 Provided Interfaces
	2.8.2 Dependencies
	2.8.3 Composition
	2.8.4 Connectors
	2.8.5 Communication Constraints
	2.8.6 Instantiation
	2.8.7 Assembly
	2.8.8 Quality Attributes


	3 OSGi Service Platform
	3.1 Module Layer
	3.2 Life Cycle Layer
	3.3 Service Layer
	3.4 Security Layer
	3.5 Comparison of Formal Component Specifications and OSGi
	3.5.1 Provided Interfaces
	3.5.2 Dependencies
	3.5.3 Composition
	3.5.4 Connectors
	3.5.5 Communication Constraints
	3.5.6 Instantiation
	3.5.7 Assembly
	3.5.8 Quality Attributes
	3.5.9 Comparison Summary


	4 A Formal Component Model for OSGi
	4.1 Model Concepts
	4.1.1 Components
	4.1.2 Connectors
	4.1.3 Composition and Assembly

	4.2 Implementation
	4.2.1 Components and Interfaces
	4.2.2 Connectors
	4.2.3 Composite Components

	4.3 Tool Support
	4.3.1 Development Time
	4.3.2 Assembly Time


	5 Evaluation
	5.1 Case Study
	5.1.1 SyLaGen
	5.1.2 Changes to the Architectures
	5.1.3 Experiences and Problems

	5.2 Discussion
	5.2.1 Criteria for Model Evaluation
	5.2.2 Evaluation Summary


	6 Related Work
	6.1 Frameworks
	6.2 Language Extensions

	7 Conclusion

