
Model-driven Development of an Automated Material Flow System:

An Experience Report

Marco Konersmann
konersmann@uni-koblenz.de

University of Koblenz-Landau, Germany

Jens Holschbach
jens.holschbach@paluno.uni-due.de

University of Duisburg-Essen, Germany

Abstract

Automated Material Flow Systems (aMFS) are usu-
ally developed by copying the code for a similar sys-
tem and adapting it for the new one. Copies of sys-
tems do usually not profit from the evolution of its
original system. In this paper we present and dis-
cuss our experiences in implementing an aMFS with
a component-oriented, model-driven development ap-
proach in an academic course.

Introduction Automated Material Flow Systems
(aMFS) are a crucial and standard part of Cyber-
Physical Production Systems (CPPS). They connect
different machines or plant parts to transport mate-
rial from one to the other. During the (re)engineering
of aMFS, the initial (re)engineering stage, i.e., draw-
ing up the material flow plan of the system, generally
serves as requirements document for other engineering
disciplines, including software engineering.

After that, reuse of control software is commonly
achieved through copying, pasting, and modifying ex-
isting control code from a similar aMFS. The static
structure and high variability of today’s control soft-
ware of aMFS prevent commonly required adaptions,
e.g., adding a light barrier or exchanging an LED with
a piezo buzzer. Often, the software has to be modi-
fied in different parts of the monolithic structure or
existing code must be wrapped to adapt the inter-
faces and/or behavior. Both approaches are error-
prone and reduce the software quality.

To overcome these problems, we envision a model-
driven development approach for aMFS that com-
prises hierarchical components with unified interface
descriptions and an integration of models, code, and
runtime information [1]. For supporting efficient reuse
and evolution, we define four requirements that have
to be fulfilled by a model-driven approach for aMFS:
(R1) An aMFS must be described by reusable compo-
nents. (R2) Components must be composable. Com-
posed components interconnect their children via in-
terfaces. (R3) It must be possible to formally vali-
date or (re)create the consistency between intercon-
nected components. (R4) Bidirectional consistency
must be ensured between models and the implemented
program code. I.e., when the code or the model is
changed, changes must be propagated to the other ar-

tifact to support (ad-hoc) evolution.
In this paper we present the experiences from an

academic course in which four master’s students devel-
oped an aMFS prototype, that produces sweets on de-
mand, with the concepts of the envisioned approach.

System Development and Results The students
first learned about the technologies used in the course
for collaboration and for the development of lan-
guages and code generators, the development of cyber-
physical systems using Arduino development tools on
ESP8266 microcontrollers, and an introduction into
different kinds of sensors and actuators. Afterwards
the team planned and distributed their work in a
guided self-organization.

Then they decided on the basic requirements for
the aMFS to build. The system (called ”FlowScale”,
see Figure 1) fills boxes with sweets on demand. Each
box is identified via an RFID card. The system con-
sists of filling stations which fill the boxes with a set
of cuboid sweets. Each station has sweets with a spe-
cific color. The sweets are initially stacked in one
charger per station and pushed out with a stepper
motor, landing in the boxes. Each station controls its
own conveyor belt with a stepper motor to move the
boxes forward. Ultrasonic sensors ensure the right
positioning of the box. An RFID scanner at each
station identifies the individual box and asks a manu-
facturing execution software (MES) how many pieces
of its specific sweet should be pushed into the box.

To describe an aMFS, the students defined a DSL
using Xtext1. In the DSL, components define incom-
ing and outgoing events, optional child components,
a state machine, and the number of general purpose
input-output (GPIO) pins they require on a microcon-
troller. Devices represent microcontrollers, that exe-
cute the software for the components. Components
can be mapped to devices. Table 1 gives an overview
of the components defined for the FlowScale system.
The component composition is shown in Figure 2.

The students developed code generators for C++
with Xtend2. The generated code represents hierar-
chical components which can be interconnected locally
or distributed over multiple microcontrollers. The

1https://www.eclipse.org/Xtext/
2https://www.eclipse.org/xtend/

https://www.eclipse.org/Xtext/
https://www.eclipse.org/xtend/


RFID Scanner
Ultrasonic Sensor

Filling Engine Charger

Belt

Figure 1: The prototype for ordering sweets

Figure 2: Composition of components in FlowScale

UltrasonicSensor Used to detect containers
ForwardingEngine Moves boxes using a roller conveyor

with a motor
RFID Scanner Used to identify boxes

Belt Composes two ultrasonic sensors
and an forwarding engine to move
boxes

FillingEngine Uses a motor to push exactly one
sweet off the magazine, by rotating
a disc with a hole by 360 degrees

Charger Componses an RFID scanner and
a filling engine to fill boxes with
sweets

FillingStation Composes one charger and one belt
System Composes multiple filling stations

Table 1: The components of the FlowScale system

components can implement state machines and have
no static dependencies to their parents or neighbours.
The code has to be manually adapted with implemen-
tation details, for which the generated code explicitly
provides areas. FlowScale uses ESP8266 microcon-
trollers for running the code.

To experimentally evaluate the evolvability of the
approach, the students added a component for signal-
ing the result of an order. In case of an error, e.g., a
box has been taken out in between and not correctly
inserted again, an LED blinks. For this scenario a
new component was defined and the code generator
was extended accordingly. The model was extended
and the generated code can successfully excecute on
the microcontrollers. In another evolution scenario,
the LED was replaced with a piezo buzzer.

Discussion With the protoypical implementation
of an aMFS, we implemented reusable, composable

components (requriements R1 and R2). The code gen-
eration provides one-way consistency from models to
code. In the described course, the translations were
developed for bidirectionality (R4), but only code gen-
eration was implemented due to the low number of
participants. We are going to implement the code-
to-model transformation in future work. The speci-
fication and validation of in- and output constraints
between components (R3) were not part of the course.
Ongoing work is examining this field.

The results have shown that the models created in
the DSL are easy to understand and to evolve. The
code generation enforces well-structured code. The
semantic mapping between model elements and the
resulting program code is encoded in these model-to-
code transformations. For future developments, this
knowledge should be made more explicit, e.g., via a
comprehensive documentation. When aMFS are to be
developed with our envisioned approach, new device
types have to be added continuously. It is necessary
that bidirectional model/code transformations can be
easily defined. We are currently evaluating different
alternatives for describing these transformations.

Conclusion Usually, aMFS are developed in a
copy-paste-change style, which is a problem for evo-
lution and maintenance. In this paper we described
how students developed a DSL and code generators
for a sweets production system, following our ideas
for developing component-based aMFS [1]. Four mas-
ter’s students with an upfront training created well-
structured code. Their models are easy to understand
and evolve. As next step, we are going to implement
the missing bidirectionality and consistency valida-
tion.

Acknowledgements We would like to thank Pedram
Golkar-Hamzey-Yazd, Christian John, Sebastian Pobel, and
Maximilian Staubach for their contributions to the project.

References

[1] Birgit Vogel-Heuser, Marco Konersmann, Thomas Aicher,
Juliane Fischer, Felix Ocker, and Michael Goedicke. Sup-
porting evolution of automated Material Flow Systems as
part of CPPS by using coupled meta models. In ICPS 2018.
IEEE, May 2018.


