Automatic Synchronization of Allocation Models

with Running Software

Marco Konersmann, Jens Holschbach
{marco.konersmann, jens.holschbach }@paluno.uni-due.de
paluno - The Ruhr Institute for Software Technology
University of Duisburg-Essen, Essen, Germany

Abstract

Software models, source code, and deployed software
are multiple views upon the same subject. These
views are often created and maintained as coupled
artifacts, which have to be synchronized. The syn-
chronization can introduce inconsistencies, ultimately
leading to errors in the understanding of the software.
Deployment models can be derived from the running
software, and model changes can be automatically ap-
plied to their origin, when the mapping between de-
ployment models and the actual deployment follows
known standards. Such an automated synchroniza-
tion of models and deployed programs can decrease
errors in the understanding of the deployment aspect
of the software.

This paper presents a prototype that derives Palla-
dio allocation diagrams from running software based
on the Java Enterprise Edition via an intermediate
language. Changes in the allocation diagrams can au-
tomatically be applied to the running software. The
extracted diagrams can be the base for performance
simulations with the Palladio Simulator.

1 Introduction

Performance simulations are more precise the closer
the simulated environment is to the real environment.
For simulating the performance of software-intensive
systems, a variety of concerns are modelled. One of
these concerns is the deployment. Deployment mod-
els represent parts of a software, hardware nodes that
may run the software, and their interrelationships.
They usually describe the actual or the desired de-
ployment of a system.

Architectural concerns such as the deployment, ab-
stract structure, or source code can be seen as multiple
views upon the same subject (cf. [2]). Synchronizing
these views is possible but problematic, because in-
formation is declared redundantly. E.g. an actual
deployment and a deployment model both represent
common information — how the system is deployed.
When multiple representations of the same informa-

The work presented in this paper is partially funded by the
DFG (German Research Foundation) under the grant number
GO 774/7-1 within the Priority Programme SPP1593

tion are not synchronized, e.g. when a model is out-
dated, the actual system can be misunderstood. The
origin of the deployment information is within the in-
frastructure: the binaries, the execution platform, and
hardware nodes have to exist for running a software-
intensive system, in contrast to the deployment model,
which exist to give an isolated view of the deployment.
A deployment model can be derived from the actual
deployment.

In the Palladio Simulator [3], a resource environ-
ment diagram describes the hardware nodes available
for the system, and their interconnection. An alloca-
tion diagram relates instances of component types to
these hardware nodes. Deriving a Palladio allocation
diagram from the actual deployment allows for pre-
venting misunderstandings of the software, and can
therefore be a basis for more reliable performance sim-
ulations. This paper presents a prototype' for bidirec-
tionally synchronizing deployment models with run-
ning software.

In the remainder of this paper, we first describe the
concepts and design of the approach. Then the imple-
mentation and use of the prototype is described with
a small example. Related work is presented before we
conclude and describe future work.

2 Concepts and Design

The prototype coordinates the translation between
deployment models and actual deployments on exe-
cution platforms. As different platforms for actual
deployments and different types of deployment mod-
els exist, the prototype uses an intermediate language
(called Mapping) to reduce the number of transla-
tions. Figure 1 shows the structure of the classes
Server, Application and Deployment of the interme-
diate language. The class Deployment connects each
one instance of Server and Application. The proto-
type manages lists of instances of these classes.

For the actual deployment of software artifacts,
some meta data is necessary, which is often not part
of deployment models. The classes of the intermedi-
ate language own properties regarding the connection

'https://s3gitlab.paluno.uni-due.de/ADVERT/
deployment-synchronizer

https://s3gitlab.paluno.uni-due.de/ADVERT/deployment-synchronizer
https://s3gitlab.paluno.uni-due.de/ADVERT/deployment-synchronizer

Server Deployment Application

-
*

String: name
String: adminName

String: name *
String: contextRoot

String: name
String: filePath

String: adminPassword
String: adminPort
String: ipAddress
String: port

Figure 1: Meta Model for Deployments

<<interface>> ”“ ModelPlatformSynchronizer "‘" <<interface>>

ModelC < } pr > PlatformConnector
A | | I
H ! ! H
l PalladioModeIConnectorl l l l l l i atfor tor

Figure 2: Synchronization Unit and Connectors

to execution platforms, for finding the software arti-
facts in the file system, and for deploying the artifacts
within the right context.

Figure 2 shows the structure of the prototype.
The translations are implemented using the interfaces
ModelConnector for different meta models and Plat-
formConnector for different platforms. The execution
of the translations is then orchestrated by the central
class ModelPlatformSynchronizer, which holds refer-
ences to implementations of the interfaces. As the
translation functionality must be bidirectional, each
interface specifies two methods — one for each direc-
tion. The ModelConnector also has utility methods
for handling the model and its editor.

3 Implementation

The approach is designed to be extensible with re-
spect to both meta model and application server.
The tool uses the Eclipse platform and therefore uses
Eclipse’s extension points for extensions with fur-
ther meta models and platforms. Implementations
for adapters for Palladio and GlassFish? application
servers are provided in the prototype.

3.1 Translation between Palladio and the
Intermediate Language

The prototype implements the logic to translate be-
tween the intermediate language and Palladio. For
translating an intermediate model into an allocation
diagram of Palladio (see Figure 3), instances of the
class Deployment are mapped to AllocationContexts.
The class AllocationContext holds references to As-
semblyContext and ResourceContainer, which corre-
spond to the model elements Application and Server.
The opposite translation works likewise.

3.2 Translation between the Intermedi-
ate Language and Deployments

The prototype implements the interface PlatformCon-
nector for the GlassFish application server. The

’https://glassfish. java.net

Palladio
|| ResourceContainer

= | AllocationContext

.war

£] Component ?

[:Application

Figure 3: Mapping between Palladio and the Interme-
diate Language

GlassfishPlatformConnector uses the server’s REST
API, which allows for a programmatic management
of deployments.

In order to update the intermediate model, an
HTTP GET request is sent to each server instance to
get all contained deployments. The response is parsed
and the model is updated accordingly.

To transfer a deployment, that is represented in an
intermediate model, to a GlassFish server instance, an
HTTP POST request is submitted. The request in-
cludes the name of the artifact, the context root, and
its enclosed artifact’s archive. Then, all deployments
in the intermediate model, that have been removed,
get removed from the server instance via an HTTP
DELETE request including the name of the deploy-
ment.

4 Example Use Case

The functionality of the tool is depicted in a small
example. A performance engineer found that one of
his two servers is under high load permanently while
the second one has free capacities. He decides to swap
the Java EE components that run on the servers using
the presented prototype.

The prototype provides the user interface shown in
Figure 4. The figure shows the last of three tabs. The
two preceding tabs are used for specifying e.g. imple-
mentations of the connectors, the model file, and the
meta data for deployments, servers, and applications.

First, a resource environment diagram and a repos-
itory diagram has to be available, to know which com-
ponent types and servers exist, that probably contain

synchronize

Model to Mapping Mapping to Deployment
N | | O@ \ =
o

Mapping to Model Deployment to Mapping
[J \ J

| Deploy |

Connectors | Properties | Actions

Figure 4: View for Synchronizing Model and Server-
Side

https://glassfish.java.net

deployments. Then, the button ”Model to Mapping”
must be clicked. This creates the intermediate model
based on the resource environment. Meta information
about the servers — such as hostnames and ports — can
now be entered.

In the next step, the button ”Synchronize” has to
be clicked to receive information about which deploy-
ments are on which server. The GlassfishPlatform-
Connector collects information about deployed .jar
and .war files, and relates these deployments to
the components in the repository diagram via their
names. New Deployments in the intermediate model
and new AllocationContezts in the Palladio allocation
diagram have then been instantiated. In this use case
one AllocationContext will appear on each of the two
ResourceContainers.

Finally, AllocationContexts can be added, modi-
fied, or removed. If only existing AllocationContexts
are changed or remove, clicking the button ”Deploy”
will update the deployments on the platform. Since
in this scenario no further deployments are created,
this action will suffice after having swapped the Al-
locationContexts. Otherwise, the intermediate step
”Mapping to Model” has to be executed again, be-
cause meta data about the new deployments must be
added. Then by clicking ”Mapping to Deployment”,
the new applications are deployed on the server.

5 Related Work

The following describes a selection of related work.
Some approaches from the reconfiguration domain
(e.g. [7]) work with deployment models internally.
These models are not made explicit, as they do not
expect the deployment to be changed externally.

Brunnert et al. [4] derive performance models from
running Java EE components unidirectionally. De-
ployment models in this approach are always one
server with one CPU, where all deployable artifacts
are deployed upon.

Approaches for model-based deployment create an
actual deployment based on a deployment model.
Such approaches can be used to create deployments
based on analysis results (e.g. [1]). Other approaches
(e.g. [6]) use domain-specific languages for an auto-
mated, rule-based deployment. These approaches do
not synchronize the model with the actual deployment
bidirectionally.

Approaches using run-time models create models
of running software. E.g. the iObserve project [5]
uses automatically generated, parametrized architec-
ture run-time models. The model used within our
approach can be seen as a run-time model. iObserve
uses monitoring to build the run-time models. Our
approach instead uses a static mapping between the
running system and the model.

6 Conclusion and Future Work

In this paper, we presented a prototype that bidi-
rectionally synchronizes Palladio allocation diagrams
with the actual deployment on GlassFish servers.
Adapters can be built for other modeling languages or
platforms. This ensures that the deployment model is
not outdated. This enhances the reliability of perfor-
mance simulations and lowers the risk for misunder-
standing the running system. The allocation diagram
can be a basis for performance analyses with Palladio,
when the other necessary diagrams also exist.

As future work, we plan to integrate the prototype
with our tool Codeling®, which can be used to inte-
grate architecture models with source code. When the
models are combined, the structure and deployment
of software systems can automatically be synchronized
bidirectionally. We would also like to extend the ap-
proach to handle heterogeneous systems with multiple
types of platforms and components. This requires the
approach to use parametrizable connector mappings.

References

[1] G. Huang et al. “Towards architecture model
based deployment for dynamic grid services”.
In: E-Commerce Technology for Dynamic E-
Business, 2004. IEEFE International Conference
on. Sept. 2004, pp. 14-21.

[2] F. Bachmann et al. Documenting Software Ar-
chitectures: Views and Beyond. Second. Addison-
Wesley Professional, 2010.

[3] J. Happe, H. Koziolek, and R. Reussner. “Fa-
cilitating Performance Predictions Using Soft-
ware Components”. In: IEEFE Software 28.3 (May
2011), pp. 27-33.

[4] A. Brunnert, C. Vigele, and H. Krcmar. “Au-
tomatic Performance Model Generation for Java
Enterprise Edition (EE) Applications”. In: Com-
puter Performance Engineering: 10th Furopean
Workshop, EPEW 2013. Vol. 8168. LNCS.
Springer Berlin Heidelberg, Sept. 2013, pp. 74—
88.

[5] E. Schmieders, A. Metzger, and K. Pohl
“A Runtime Model Approach for Data Geo-
location Checks of Cloud Services”. In: Service-
Oriented Computing: 12th International Confer-
ence. Vol. 8831. LNCS. Springer Berlin Heidel-
berg, 2014.

[6] O. Giinalp, C. Escoffier, and P. Lalanda. “Rondo:
A Tool Suite for Continuous Deployment in Dy-
namic Environments”. In: 12th IEEE Interna-
tional Conference on Services Computing. 2015.

[7] R. Abid, G. Salatin, and N. D. Palma. “Formal
Design of Dynamic Reconfiguration Protocol for
Cloud Applications”. In: Science of Computer
Programming 117 (2016), pp. 1-16.

Shttps://s3gitlab.paluno.uni-due.de/ADVERT/codeling/

https://s3gitlab.paluno.uni-due.de/ADVERT/codeling/

	Introduction
	Concepts and Design
	Implementation
	Translation between Palladio and the Intermediate Language
	Translation between the Intermediate Language and Deployments

	Example Use Case
	Related Work
	Conclusion and Future Work

