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Abstract. In the domain of information systems, behaviour is typically
described without a formal foundation. These systems could benefit from
the use of formal behaviour modeling. However, the perceived costs for
integrating a formal behaviour modeling approach seems to be higher
than the expected benefits. A framework for formal behaviour modeling
and execution could help bringing the benefits of formal modeling to this
domain when it imposes a low barrier for integrating the approach. To
achieve this, we present our approach for designing and executing be-
haviour models which are encoded with well-defined source code struc-
tures. In our approach the model is statically represented in the program
code. Therefore the model does not exist as a first class citizen, but is
extracted from the code at design time and run time. These models can
be integrated within a context of arbitrary other program code, that does
not follow the semantics of the model type. They therefore impose only
a small barrier for their use.

1 Motivation

The domain of information systems is driven by platforms that are defined in
industry standards. These platforms typically describe the structure of informa-
tion systems that use the platform, including structural specifications for data
models, logical components, and user interfaces. The specifications are most of-
ten accompanied by specifications for security, logging, monitoring, and other
cross cutting concerns.

Formal behaviour models are not broadly used in the domain of information
systems. Although the domain includes some problems that require complex
behaviour descriptions, great parts of information systems are not modeled by
behaviour models. The benefit of formal behaviour models – the ability to for-
mally reason about the behaviour and the ability to model small, interacting
behavioural components – is often considered not necessary, or the costs for
using formal behaviour models is considered too high for their benefits. There-
fore, the widely used platforms for information systems do not include formal
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behaviour models, but rely on the underlying imperative programming language
for behaviour specifications. Another property of information systems is, that
they are often long-living systems, which are and have been subject to evolution.
Therefore changing the complete behaviour towards a formal model implemen-
tation is infeasibly expensive.

For behaviour specifications to be more broadly used in information systems,
we believe that a framework needs to be available, which imposes a low barrier
for its integration. We identified the following criteria for a solution for formal
behaviour models in the information system domain:

– Ease of Application Integration As it is not expected that the complete
behaviour of an information system is changed at once, it is desirable that be-
haviour models can easily be used for increasingly many parts of the software
in an evolutionary fashion. This includes that arbitrary application program
code can be called from the model to get or set external information.

– Ease of Platform Integration It is desirable that a solution is easily
integratable into the standard platforms for information systems.

– Integrated Editor The model specifications should be editable in the typ-
ical editors for information systems, e.g. IDEs like Eclipse1.

– Ease of Development Tool Integration The tools used for developing
information systems today are very much focused on program code and text
based files. This includes e.g. code repositories, collaboration tools, or code
metric tools. It is desirable that a solution for behaviour models in infor-
mation systems integrate well with these tools. Therefore, the key model
information should be readable and editable with text editors. Ideally, it
should also be debuggable in an IDE.

– Possibility to Monitor The model should be easy to monitor.
– Possibility to Debug It should be possible to debug the model. Ideally

this can be done within an IDE.

Our approach for a formal behaviour model framework that can be used in
information systems is to integrate model specifications into the source code of
programs. With this approach, the models can be reliably extracted from the
code. We call this approach Architecture-Carrying Software (ACS) [5]. In ACS
we integrate static structure models, including component models and behaviour
models with source code that complies with component frameworks. Other mod-
els, including quality information and deployment information, are planned to
be added. Currently, the behaviour model included in ACS is a batch-oriented
state machine (see [1]). This batch-oriented model is, however, not well suitable
for information systems, because often one wants to interactively influence the
behaviour of a subsystem.

In this paper we present an alternative behaviour model integrated with
source code. The integrated model type is that of Protocol Contracts [7, 6]. The
model allows for interactive behaviour, which makes it better-suited for infor-
mation systems. In the following, we will first explain briefly the conceptual
1 http://www.eclipse.org
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foundations of our work in section 2. Section 3 describes the integration of Pro-
tocol Contracts with Java source code at design time. The execution runtime and
the corresponding run time model are described in section 4. The idea behind
a model editor for integrated Protocol Contracts is introduced in section 5. We
discuss our approach in section 6, before we present future work in section 7 and
related work in section 8. We conclude in section 9.

2 Conceptual Foundations

In this section we introduce the conceptual foundations for this paper. First we
briefly introduce our approach for integrating model information with source
code. Then we describe Protocol Contracts, before we describe the integration
of Protocol Contracts with source code in section 3.

2.1 Architecture-Carrying Software

The idea of Architecture-Carrying Software (ACS) [5] is to represent architec-
tural models in source code with sophisticated code structures. Architecture-
Carrying means that the software itself carries its architecture information,
without the need for adjacent models that are separate from the code.

The code structures that represent models in ACS only define architecturally
relevant code. Therefore they include interfaces to execute arbitrary other, non-
architectural code.

These code structures are not meant to be directly changed with source
code editors, but with model editors. These model editors allow to edit the
architecture in a representation that software architects are comfortable with,
e.g. UML or formal specification languages. The editor extracts the architecture
from the underlying code base and presents a model to interact with. Changes
to the model are reflected by changes to the underlying code base. The model
view is volatile. It only exists as long as the model editor is in use. With ACS,
the architecture model is available at compile time as source code structures and
at run time via reflection mechanisms.

The code can still be viewed and edited with text editors. The source code
representing models should be edited with respect to the ACS code structure
definitions. The source structures define so-called entry points where external
code is meant to be integrated. Code that does not represent the models can
still be edited freely.

Currently, the only behaviour model included in ACS is a batch-oriented state
machine (see [1]). This batch-oriented model is, however, not suitable for many
applications, because usually one wants to interactively influence the behaviour.
In this paper, we present our ongoing work how we extend ACS with Protocol
Contracts.
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2.2 Protocol Contracts

Protocol Contracts [7, 6] describe event-driven, state-based behaviour of object
models. In a Protocol Contract, events are presented to protocol models. Protocol
Models react to events by accepting them and changing their state, or by refusing
them. In the following, we will briefly introduce Protocol Contracts as they are
described in [7]. An example of a protocol model is shown in figure 1.

Fig. 1. An example system specified as Protocol Contract (Source: [6])

Events Events in Protocol Contracts are typed. An event type has a name and
attributes. Event attributes are also typed. Attribute types are the usual prim-
itive types of programming language. This especially includes integers, floating
point numbers, booleans, and strings. In addition, attributes can have the type
of an object. An example is the event of the type Deposit in figure 1. This event
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type defines an attribute date of deposit of the type Date, an attribute amount
of the type Currency, and an attribute into, which is a reference to an object
to be affected by this event. An event type is instantiated to an event instance
(also called event in this paper) by setting attribute values.

Protocol Machines Protocol machines describe a deterministic behaviour con-
tract for objects. They can be built up either by states and rules how to change
the states in reaction to events, or by comprising other protocol machines. The
first are called elementary machines.

Elementary machines have a stored state. The stored state consists of typed
variables, including an implicit state variable (just state variable from now on).
The variables work analogously to attributes in objects of object-oriented pro-
gramming languages like Java. The state variable represents a finite set of pos-
sible states, that a protocol machine can be in. The value of a state variable can
be determined by the sequence of events, that the machine accepted (so called
topological states), as it is known from UML state machines [9, page 535 ff.], or
by a state function that is evaluated when a event is presented to the machine.

Non-elementary machines are built by nested non-elementary and eventually
by elementary machines. They build their stored states based on the stored states
of the nested machines. A nested machine can read and write its own stored
state. It can read the stored state of all other machines in its environment. The
environment of a machine is built by the stored states of its parent machines
and all of their parents’ nested machines.

Protocol machines have a repertoire, that describes which events are accepted
or rejected. Events that are neither accepted nor rejected are ignored. Repertoire
entries include:

1. an event type,
2. a reference to an object that is represented by this machine (the OID),
3. a role in which the machine accepts the event type,
4. a boolean expression based on the machine’s stored state, that has to evaluate

to true before the event is processed (the “test”)
5. a term that expresses the update to the machine’s stored state when the

event is processed

The role is important when an event references several similar machines.
E.g. the event Transfer (see figure 1) transfers money from one bank account
to another. This event references one account in the role source, and another
account in the role target.

An event is accepted by a machine, if (1) it has a repertoire entry for the
given event type, (2) it represents exactly one object that is referenced by the
event, (3) in the role stated by the object reference in the event, and (4) the test
is evaluated to true. If the test evaluates to false, the event is rejected. In any
other case the event is ignored.

Non-elementary machines reject an event when any nested machine rejects
the event. When all nested machines ignore the event, the non-elementary ma-
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chine ignores the event. When at least one nested machine accepts the event and
all other nested machines accept or ignore the event, the event is accepted.

Protocol Systems Protocol systems compose protocol machines in terms of
Communicating Sequential Processes (CSP) [4]. Protocol systems themselves
have no stored state, event types, and referenced object. Their repertoire and
their references to objects are built by their composed machines. A protocol ma-
chine that is composed by a protocol system has read access to the attributes of
all other protocol machines within the system. Protocol systems can themselves
be subject to composition by other protocol systems.

Protocol Models Protocol models are protocol machines that are not nested or
composed by any other protocol machine or system. They describe the complete,
self-enclosed behavior of the objects they represent.

3 Model Integration

For adding new behaviour models to ACS the following artefacts are necessary:

1. a meta model of the model type to integrate,
2. integration mechanisms for a specific framework or language,
3. a runtime to execute the model,
4. an editor to inspect and change the model in a model view.
5. a monitor to show the executed model

The meta model of protocol contract comprises a design time meta model
and a run time meta model. This is due to the fact, that instances of protocol
machine specifications are created at run time. Therefore elements exist at run
time, that are not modeled explicitly at design time. In the following we present
the meta model for the design time (section 3.1) and integration mechanisms for
Protocol Contracts in the Java programming language (section 3.2).

The execution runtime, including the run time meta model, is described
in section 4. An editor, which may also serve as a monitor and for debugging
purposes, is described in section 5.

3.1 Design Time Meta Model

The ACS prototype is implemented in Java and based on Ecore models[11].
Therefore, the meta model is implemented in Ecore. In this section, we describe
the design time meta model for our implementation of Protocol Contracts, which
is based on the description from McNeile and Simons [7].
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Fig. 2. Machine types in the Protocol Contracts meta model

Machine Types There are two machine types represented in our meta model:
The Protocol Machine and the Protocol System. In our model (figure 2) a Pro-
tocolSystem always composes at least two machines. Using this notation, a hi-
erarchy of machines can be built. The inner nodes and the root of the tree are
ProtocolSystems. The leafs are ProtocolMachines.

The ProtocolMachine contains MachineAttributes, MachineRoleAttributes,
one Statetype, Roles, EventTypes, and RepertoireEntries. The MachineAttributes
and MachineRoleAttributes specify the local storage of a machine. The first de-
fine value-based attributes. The latter define references to OIDs in Protocol
Contracts. The attributes are typed, and may define a default value, which is
null, when not specified. The Statetype defines the type of the machine, i.e.
whether the machine defines topological states (StoredStateType in our model),
or a state function (DerivedStateType in the model). Both types may have a
number of States. However, the DerivedStateType also has a StateFunction which
contains an attribute spec of the type EString (an Ecore representation of a Java
String), specifying its function in terms of Java source code. The repertoire, that
each machine contains, is formed by the RepertoireEntries in our model. The
EventType and Role of the repertoire entry are represented as references of the
contained elements of a machine. This allows to reuse EventType and Role ele-
ments. Repertoire entries can also reuse Event Type and Role elements of their
machines. This introduces a dependency on the model level towards these other
machines. The updateSpec defined by repertoire entries represent the update of
the local storage during transitions. Each entry knows its beforeState and the
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nextState, if applicable. This represents the precondition and the update of the
state variable of stored state machines, and the pre- and postcondition for de-
rived state machines.

EventAttribute

type : EJavaClass

EventType RoleRole2ObjectTypeEntry

PCObjectType

[0..*] attribute

[0..*] role2MTE [1..1] key

[1..1] value

Fig. 3. Event Types in the Protocol Contracts meta model

Figure 3 shows the part of the meta model that defines event types. The
class EventType may contain typed EventAttributes. The EventType may contain
Role2ObjectEntities, which bind the Role in an event type to a PCObjectType.
The PCObjectType is the type of an OID. This e.g. represents the type Customer
in the example in figure 1.

3.2 Integration Mechanisms

For describing Protocol Contracts as model type for ACS, source code structures
for the design time meta model elements have to be defined. In the following sec-
tions, we describe the source code structures that represent Protocol Contracts
in Java code. Elements that represent the instantiation of machines and events
are runtime artefacts and therefore not represented in the code.

Protocol Machine A protocol machine is represented in Java code as a Java
package that includes a class, which implements a marker interface IProtocol-
Machine. We call this class the Protocol Machine Class (or just Machine Class).
Listing 1.1 shows the Machine Class template. A marker interface is an inter-
face without any operations, that only exists to mark classes. Only one Machine
Class is allowed within a Java package. Other classes that define the protocol
machine (as shown in the following) also reside within this package or subpack-
ages2. Other classes, unrelated to the protocol machine, may also reside in that
package, although we do not recommend that.

The Machine Class also includes a reference to the object type that is rep-
resented by the machine. It is an attribute in the class definition marked with a
MachineOID annotation. The object type of the OID is a simple Java class. The
type of the attribute is that class. The variable is named oid for convenience.
2 This is actually a recommendation, not a requirement. For protocol machines with

more than 3 or four states, we found it practical to use subpackages for structuring
reasons.
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public class $MachineName implements IProtocolMachine {

@MachineOID
$PCObjectTypeName oid;

@MachineContext(
localState = $MachineNameVariable.class,
localStateRead = IReadableVariable.class,
localStateWrite = IWritableVariable.class)

IContext context;
}

Listing 1.1. The source code structure for a Protocol Machine Class with the reference
to a Machine Attribute Class

Machine Attributes and Machine Role Attributes Machine attributes
and machine role attributes are represented in a separate class, called Variable
Class. The Variable Class contains the local storage (excluding the state variable)
and the corresponding get and set methods. The methods are also represented
in interfaces: one interface for get methods, the Read Interface, and one interface
for set methods, the Write Interface. These interfaces are entry points for reading
and changing the attributes. The Variable Class implements these interfaces. A
third interface, the Context Interface, defines the environment of the machine.
For a single protocol machine, the Context Interface extends the Read Interface
and the Write Interface of the machine. The Machine Class contains a variable,
with the type of the Context Interface as a reference to its environment, the
machine context. Due to the interface and class structure described above, the
Context Interface allows for reading and writing the local storage of the machine,
and for reading the local storages of its environment. An annotation on the
variable for the machine context states the Read Interface, the Write Interface,
and the Variable Class. Listing 1.1 shows how the Machine Class is built with the
Variable Class (here and in the following listings, a dollar sign denotes a variable
in a template). The reference to the OID is a reference to the underlying object,
and allows for executing operations of this object. It is therefore a reference to
model-external code.

States and OIDs States are represented as a Java class that extends the
abstract class AbstractPCState (see listing 1.2). The name of the state is repre-
sented by the class name. The class extends the abstract class AbstractPCState.
That abstract class has a type parameter that represents the OID type of the
machine. AbstractPCState has an oid reference to an arbitrary object. This is the
interface of the states to model-external code. This can be used within transition
code to execute arbitrary operations in the context.

public class $StateName extends AbstractPCState<$PCObjectTypeName> { }

Listing 1.2. The source code structure for a state
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State Variable The state variable in Protocol Contracts can be built in two
ways. In stored state protocol machines, the state variable is determined by
the initial state and the updates. In derived state protocol machines, the state
variable is derived using a state function.

The state variable of stored state machines does not have a static representa-
tion. Therefore no source code structure exists for that state. Machine Classes of
derived state protocol machines contain a method getCurrentState() to evaluate
the state variable. The method returns Class<? extends AbstractPCState>, i.e.
the reference to the class that represents the current state. The method’s body
implements the state function.

Roles and Event Types Roles are represented as classes implementing the
marker interface IRole. An event type is represented in the source code as Event
Type Class. This is a class implementing the marker interface IEventType. Event
types contain two types of meta data: (1) event attributes, and (2) roles and
object references.

Event attributes are represented as object variables in the class with the cor-
responding type. The attribute name is represented by the name of the variable.
The variable is complemented by a get and a set method.

PCObjectTypes are represented as Java classes. Therefore, roles and object
references can be represented by variables with the corresponding class as vari-
able type, and the role as variable name. These variables are also complemented
by corresponding get and set methods. Listing 1.3 shows the source code struc-
ture for an Event Type Class.

Repertoire Entries Repertoire entries define the following data: (1) an event
type, (2) a referenced object, (3) a role for which the event type is accepted, (4)
a test, and (5) an update specification. In the source code these are represented
as annotated methods (Repertoire Entry Methods), as shown in listing 1.4. The
methods are contained by State Classes or a Protocol Machine Class. The test is
defined by the class that implements the method. When a State Class implements
the method, that state is the necessary source state. When a Protocol Machine
Class of a stored state machine implements the method, the source state is the
initial pseudo state. When a Protocol Machine Class of a derived state machine

public class $EventTypeName implements IEventType {

$PCObjectTypeName $roleName;

$AttributeType $attribtueName;

// getters and setters

}

Listing 1.3. The source code structure for event types, including event attributes and
roles
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@RepertoireEntry(nextState = $StateName.class)
public void $eventTypeName($EventTypeName event, IContext context, $RoleName role){

// Update Specification

}

Listing 1.4. The source code structure for repertoire entries

implements the method, the before state is empty. The method’s parameters are
a reference to an Event Type Class object (event), a reference to an object of the
Context Interface (context), and a reference to the Role class. The parameter
event represents the event type. The context parameter is used for the update
specification and is a reference to the machine’s context. The next state of the
repertoire entry is given as parameter of an annotation as class reference.

Both, the Machine Class and the State Class have an attribute oid that is
the reference to the object defined by the machine. Here the attribute acts as an
interface to non-architectural code. Within the update specification, operations
to the OID can be called. The semantics of the executed operations of the OID
are not part of the model.

Protocol Systems The source code representation of a protocol system is a
Protocol System Class, or shortly System Class (see listing 1.5). Such a class
implements the marker interface IProtocolMachine, just as Protocol Machine
Classes. In addition, Protocol System Classes are annotated with the annota-
tion ProtocolSystem, which takes a list of classes as parameter, that extend the
IProtocolMachine interface. One package may only contain either one Protocol
System Class or one Protocol Machine Class. Subpackages may contain further
Protocol Machines or Systems.
@ProtocolSystem({ $MachineName.class, ... })
public class $ProtocolSystemName implements IProtocolMachine {

@SystemEnvironment
ISystemContext context;

}

Listing 1.5. The source structure for Protocol Systems

Protocol Systems influence the environment of their referenced protocol ma-
chines and systems. To represent this influence, each Protocol System Class is
accompanied by a System Context Interface. This interface extends the Read In-
terfaces of its composed protocol machines and the System Context Interfaces of
its composed protocol systems. The System Context Interface is an attribute of
the Protocol System Class, annotated with an annotation SystemEnvironment.

When a protocol machine is composed by a protocol system, the machine
can read variables from all machines composed in the system. To reflect this, the
machine’s Context Interface replaces the extension of its Read Interface with
the System Context Interface of the highest Protocol System in the composition
hierarchy (see figure 4).
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Fig. 4. The given interface and class structure ensures that the variables of all com-
posed machine are readable by every machine in the system, and that each machine
can only alter its own variables.

Protocol Models Protocol models are protocol machines that are not nested or
composed by any other protocol machine or system. This can be evaluated from
the machine context. Thus no explicit source code structures exist for protocol
models.

3.3 Example

To show the functionality of our meta model and source code structures, we
implemented a desktop example. Our example is an implementation of the Bank
Model example given in [6]. The model of the example system is shown in figure
1. We will here only show parts of the example that differ enough to show
the different working concepts. We therefore show here our implementation of
account machine 1, a protocol machine with stored states; account machine 4, a
protocol machine with derived states; and the account system, a protocol system.

Account Machine 1 Account machine 1 (AM1) is a protocol machine with
stored states. All of the classes for AM1 are placed in the same Java package.
Figure 5 gives an overview of the classes and interfaces in the package. The
Protocol Machine Class for AM1 is depicted in listing 1.6.

The Protocol Machine Class of AM1 defines one repertoire entry from the
pseudo state — here represented by the containment relationship from the Pro-
tocol Machine Class to the method — to the State Active. The body of the
method open shows the update specification.

Figure 6 shows the class structure of the machine attributes for AM1 (without
the influence of the system, that composes the machine). The interfaces shown in
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Fig. 5. The package structure of protocol machine for Account Machine 1. The annota-
tions mean: (E) Event Type Classes; (M) Machine Class, Variable Class and interfaces;
(O) Referenced Object classes; (R) Role Classes; (S) State Classes. The c in a circle
denotes a class. The i in a circle denotes an interface.

public class AccountMachine1 implements IProtocolMachine {

@MachineOID
AccountObject oid;

@MachineContext(
localState = AccountMachine1VariablesImpl.class,
localStateRead = IReadableVariables.class,
localStateWrite = IWritableVariables.class)

IContext context;

@RepertoireEntry(nextState = Active.class)
public void open(Open event,

IContext context, Account role) {
context.setBalance(0);
context.setOwner(event.getCustomer());

}
}

Listing 1.6. The implementation of the Machine Class for Account Machine 1
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Fig. 6. The class structure for the machine attributes of Account Machine 1

this figure contain get and set methods according to their task. The implementing
class is shown in listing 1.7.

The Event Type Class of Open is shown in listing 1.8. It contains the at-
tributes and roles prescribed by the specification in in terms of attributes, get
methods, and set methods.

The State Class of the state Active is shown in listing 1.9. It includes reper-
toire entry methods for all accepted events as described in figure 1. Our source
code structure however does not allow to create an entry with the same update
and target state, but with multiple event types and roles without copies of the
update specification. We need multiple methods to represent this structure.

Some classes are not shown in detail here. The Role Classes implement the
Interface IRole, but do not contain any methods or attributes. The Event Type
Classes that are not shown are built accordingly to the Event Type Open in the
obvious way.
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public class AccountMachine1VariablesImpl
implements IReadableVariables, IWritableVariables {

int balance;

CustomerObject owner;

// getters and setters

}

Listing 1.7. The machine attribute class of Account Machine 1

public class Open implements IEventType {
Date dateOfOpen;

AccountObject account;

CustomerObject owner;

// getters and setters

}

Listing 1.8. The Event Type Class of the event type Open of Account Machine 1

public class Active
extends AbstractPCState<AccountObject> {

@RepertoireEntry(nextState = Active.class)
public void transfer(Transfer event,

IContext context, Target role) {
oid.notifyMoneyReceived("You received money: " + event.getAmount());
context.setBalance(

context.getBalance() + event.getAmount());
}

@RepertoireEntry(nextState = Active.class)
public void deposit(Deposit event,

IContext context, Into role) {
oid.notifyMoneyReceived("You received money: " + event.getAmount());
context.setBalance(

context.getBalance() + event.getAmount());
}

@RepertoireEntry(nextState = Active.class)
public void transfer(Transfer event,

IContext context, Source role) {
context.setBalance(

context.getBalance() - event.getAmount());
}

@RepertoireEntry(nextState = Active.class)
public void withdraw(Withdraw event,

IContext context, From role) {
context.setBalance(

context.getBalance() - event.getAmount());
}

@RepertoireEntry(nextState = Closed.class)
public void close(Close event,

IContext context, Account role) {
}

}

Listing 1.9. The Active state of Account Machine 1
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Account Machine 4 Account Machine 4 (AM4) is a protocol machine with
a derived state. Thus its structure differs slightly from AM1. Figure 7 gives
an overview of the classes and interfaces in the package. The package does not
contain Role Classes or Event Type Classes, because the machine relies on the
classes already stated by AM1. The Protocol Machine Class for AM4 is depicted
in listing 1.10. It especially contains the State Function Method getCurrentState,
which shows the implementation of the state function in Java. All other classes
are built in the ways already stated and do not include anything surprising.

Fig. 7. The package structure of protocol machine for Account Machine 4. The anno-
tations mean: (M) Machine Class, Variable Class and interfaces; (S) State Classes. The
c in a circle denotes a class. The i in a circle denotes an interface.

public class AccountMachine4 implements IProtocolMachine {

@MachineOID
Account oid;

@MachineContext(
localState = AccountMachine4VariablesImpl.class,
localStateRead = IReadableVariables.class,
localStateWrite = IWritableVariables.class )

IContext context;

public Class
<? extends AbstractPCState<AccountObject>>
getCurrentState() {

if (context.getBalance() < -50)
return OverLimit.class;

else

return WithinLimit.class;
}

@RepertoireEntry(nextState = WithinLimit.class)
public void withdraw(Withdraw event,

IContext context, From role) {
}

}

Listing 1.10. The implementation of the Machine Class for Account Machine 4

Bank System The protocol system Account System (AS) composes AM1 to
AM4 (AM2 and AM3 are not shown in this paper). Following the source code
structures defined in section 3.2, the AS consists of one Protocol System Class
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(listing 1.11) and the System Context Interface, which is an interface without
any own operations. Figure 8 shows how the class structure is influenced by the
system. IContext of AM1 no longer extends the Read Interface of AM1, but the
ISystemContext of the AS. The ISystemContext extends the Read Interfaces of
all composed machines (only AM1 and AM4 are shown in this figure). Therefore
each machine has read access to all variables in the environment.
@ProtocolSystem({ AccountMachine1.class, AccountMachine2.class,

AccountMachine3.class, AccountMachine4.class })
public class BankAccountSystem implements IProtocolMachine {

@SystemEnvironment
ISystemContext context;

}

Listing 1.11. The source code of the System Class of the Bank Account System

Fig. 8. The composition by the Account System has an influence on the source code
structure of the Account Machine 1. IContext no longer extends IReadableInterface, but
the ISystemContext. The ISystemContext extends the Read Interfaces of all composed
machines (only AM1 and AM4 are shown in this figure). Therefore each machine has
read access to all variables in the environment.

4 Execution Runtime

The Protocol Contracts meta model is executable. The runtime is in a prototype
state. It is divided into a bytecode to model extractor, and a protocol model execu-
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tor. The bytecode to model extractor parses bytecode to read the protocol model
structures encoded as presented in section 3.2 using code reflection mechanisms.
From these structures it builds the design time model, on which the run time
model is based. The protocol model is then available as Ecore model in memory.

The protocol model executor manages the model. I.e. it provides interfaces for
clients to interact with the protocol model. For executing the model, an instance
of event classes can be created, filled with attribute values and presented to the
execution runtime. The execution runtime uses the model information at run
time, e.g. to create machine instances, switch the stored states, and uses calls to
the operations of the source code structures for executing update specifications.
It then reports about the acceptance of the event, which can be accepted, ignored,
or refused.

These calls enable the source code structures to contain interfaces to model-
external code. The update specification of a repertoire entry may contain calls
to the underlying object using the attribute oid. The update specification is
encoded as Java method, which is called by the runtime in an inversion-of-control
pattern. When the control flow hits the underlying object, the model-external
code is executed.

4.1 Run Time Meta Model

At run time, instance of machines, events, and related model elements are cre-
ated. Figure 9 shows the elements for instantiating machines. Protocol systems
and protocol machines each have model elements for their instantiation. They
are build analogously to their type specification. ProtocolMachineInstances con-
tain MachineAttributeInstances, which represent the actual values of the value
types in the local storage. MachineRoleAttributeInstances represent the refer-
ences to OIDs in machine instances, which are related to a role. All elements
have relations to their respective type elements. This is not shown in the figure
for readability reasons.

Event instances (see figure 10) are represented as EventInstance elements.
They reference their type. They contain EventAttributeInstances, value-based
attributes, and Object2RoleEntries, which map OIDs as PCObjectInstances to
roles.

4.2 Monitoring and Debugging

The execution runtime offers a web service to register a monitor for a running
protocol model. The monitor can be informed about the current system state
(including the design time mode, and the runtime model), and about incoming
events. A debugging interface allows to change values of machine attributes. The
monitoring and debugging interfaces are currently in a prototype state.
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PCObjectInstanceProtocolMachineInstance

MachineAttributeInstance

value : EJavaObject

AbstractProtocolMachineInstanceProtocolSystemInstance

MachineRoleAttributeInstance

[1..1] oid

[0..*] attribute

[0..*] roleAttribute

[1..1] value

[2..*] composedMachineInstances

[0..1] parentSystemInstance

Fig. 9. Protocol machines instantiation in the Protocol Contracts meta model

EventInstance

EventAttributeInstance

value : EJavaObject

Object2RoleEntry

PCObjectInstance

Role

EventType

[0..*] attribute

[0..*] object2RE

[1..1] key

[1..1] value

[1..1] type

Fig. 10. Event instantiation in the Protocol Contracts meta model
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5 Model Editor

The editor is divided into a source code to model extractor/adapter to extract the
model from source code, and the model editor. The extractor/adaptor uses the
Java Development Tools (JDT)3 to parse code structures for building an Ecore
model of the protocol model described in the source code, while keeping the
trace links to the code. Technically, these trace links are java objects that relate
source code elements to model objects, while providing methods to translate the
one into the other. When the model is changed in the editor, the changes are
reflected in the code, following the trace links. Therefore the source code is not
overridden, but changed. The editor itself is a standard Ecore editor in Eclipse.
The extractor/adaptor is not fully implemented yet.

6 Discussion

Our integration of Protocol Contracts follows several design decisions. The main
variation points are the meta model and the integration mechanisms. The meta
model was designed to be close at the description in [7]. As some parts of the
example were not completely described, we cannot be sure that the meta model
is in a final version.

Two attributes in the model are strings without semantics. The attribute
spec in the class StateFunction, and the attribute updateSpec in the class Reper-
toireEntry. Both contain Java source code that is part of the model definition.
This might seem inconsequent. These method bodies are, however, entry points
for model-external code. The operations called upon the OID objects are not
semantically encoded in the model.

The work presented in this paper are part of the research project ADVERT4

that aims at using Architecture-Carrying Software for solving evolution chal-
lenges in long-living software. We plan to integrate the meta model for Protocol
Contracts with the meta model for architecture descriptions from this research
project. Therefore we also expect slight changes to the meta model for integra-
tion purposes.

The integration mechanisms presented in this paper are designed for Java
programs. The model execution is event-based. One could possibly create other
integration mechanisms that better integrates with already existing event-based
communication frameworks. In the research project mentioned before, we pro-
vide integration paths to multiple runtime frameworks. Therefore we expect to
create other integration mechanisms. These can, however, base largely on the
mechanisms presented in this paper.

3 https://eclipse.org/jdt/
4 http://advert-project.org
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7 Future work

As future work, we plan to further evaluate the concept and implementation, and
integrate it in our framework for Architecture-Carrying Software. This includes
that the Protocol Contracts are included into an existing architecture-modeling
language. The architecture languages, on which ACS is based, typically have
components and their interconnections as first-class entities. We intend to create
a mapping from oids to component instances, and object types to component
types. We can then define the behaviour of component types with Protocol
Contracts. The interfaces to arbitrary code play an important role here, to allow
for behaviour that should not be modeled on an architectural level. However,
some details of the integration still have to be inspected.

Furthermore the source code to model extractor/adaptor has still to be de-
veloped. Blueprints for such components exist in the context of the ADVERT
project for other model types. Therefore we expect no substantial difficulties in
the development of this component. Also the execution runtime is currently in a
prototype state. We need to test it with further examples to be more confident
about its reliability.

The editor is currently in the work. Blueprints for this editor are also avail-
able. The editor is based on the standard reflective Ecore editor in the Eclipse
IDE. Only the loading and the saving mechanisms will be overridden to extract
the model from the code while keeping the trace links between model elements
and the code, and to execute the changes on the code when the changes are
saved.

8 Related Work

Related work to ours can be found for several aspects. Balz already created an in-
tegration for a behaviour model in his PhD thesis [1]. He integrates state machine
models. His implementation of state machine models is working in a batch-like
mode. I.e. a state machine is started and is executed until it terminates. The
integration of Protocol Contracts is working interactively by generating events
and presenting them to the protocol model.

Managing multiple representations of software design and specifically archi-
tecture has been subject to other fields of research. Related to the paper at hand
is the field of Model-Driven Development (MDD) (e.g. [3], [10]) and round trip
engineering (e.g. [8]).

MDD concentrates on deriving code from models. The models and the code
are two representations of the program that are independently subject to evolu-
tion and maintenance. Changes in the specification can be taken over automati-
cally in the implementation. When the program changes in the implementation,
these changes cannot be automatically taken over in the specification.

Round trip engineering (RTE) describes techniques to synchronize models
and code. The models used in RTE are very detailed and technical, e.g. UML
class diagrams. RTE thus allows for two-way synchronization, but does not
bridge the gap between abstraction levels, as our approach does.
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The work presented here can be seen as part of models@runtime [2]. We
have models with a high abstraction level that are not tied to the underlying
technology. We have a technology specific runtime to execute the models. In
addition, we have defined interfaces between the model and arbitrary source
code.

A runtime for Protocol Contracts already exists (see [6]). We did not find
extensive information about that runtime. For our runtime we plan to allow for
inspecting and debugging of running Protocol Contracts at run time. It is not
clear from [6] whether this is possible with the already existing runtime.

9 Conclusion

For behaviour specifications to be more broadly used in information systems, we
believe that a framework needs to be available, which imposes a low barrier for its
integration. We identified six criteria that a possible solution has to fulfill to be a
candidate for a broader use in this particular domain. In this paper we presented
our proposal for a framework for developing and executing Protocol Contracts
in the domain of information systems. We evaluated the functionality in a small
desktop example. The evaluation shows that the meta model and source code
structures are suitable to model Protocol Contracts. Our implementation meets
the identified criteria:

– Ease of Application Integration Our framework allows the Protocol Con-
tract implementations to call external code during state transitions. This
includes information interchange with program code outside of the model
implementation. The oid objects represent conceptual interfaces between the
model and the model-external code. This allows to integrate such a formal
behaviour model incrementally into existing applications.

– Ease of Platform Integration The framework is implemented in Java as
a library. The Protocol Contract implementation consists of code following
the necessities of this framework code and a dependency to the execution
runtime implementation. It is therefore easy to embed into typical infor-
mation systems implemented in Java. Model instances can be created from
information system platform code, and platform functions can be called from
within the models. This allows to integrate the formal modeling execution
framework into information system platforms.

– Integrated Editor We are currently developing an editor that is integrated
with the Eclipse IDE, and reuses much of this IDE’s concepts and code.
However, the editor is not available yet.

– Ease of Development Tool Integration The model specification is read-
able and editable without an explicit model editor. A text editor suffices, but
a comprehensive Java editor is recommended to read and edit the code that
represents the model. As the model specification is based only on program
code, it can be easily managed with source code management systems and
other Java tools.
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– Possibility to Monitor A monitoring interface for the execution runtime
exists as a prototype, which allows to be informed about the current system
state and about executed events.

– Possibility to Debug A debugging interface for the execution runtime
exists as a prototype, which allows to read and change machine attributes at
run time. This is only a starting point. An extension of this interface should
be able to also edit e.g. running machine instances and types. However,
as the model is based on Java code, especially the update specifications
of transitions and the state functions can be edited at run time with the
standard Java debugging mechanism.

We see that all of the criteria are fulfilled to a certain extend. The fewest
developed criterion is the integrated editor, which is in the work, but not available
yet.
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