A Conceptual Framework and Experimental
Workbench for Architectures

Marco Konersmann and Michael Goedicke

paluno - The Ruhr Institute for Software Technology,
University of Duisburg—Essen
Gerlingstrafte 16, 45127 Essen, Germany
{marco.konersmann,michael.goedicke}@paluno.uni-due.de

Abstract. When developing the architecture of a software system, in-
consistent architecture representations and missing specifications or doc-
umentations are often a problem. We present a conceptual framework for
software architecture that can help to avoid inconsistencies between the
specification and the implementation, and thus helps during the main-
tenance and evolution of software systems. For experimenting with the
framework, we present an experimental workbench. Within this work-
bench, architecture information is described in an intermediate language
in a semantic wiki. The semantic information is used as an experimental
representation of the architecture and provides a basis for bidirectional
transformations between implemented and specified architecture. A sys-
tematic integration of model information in the source code of component
models allows for maintaining only one representation of the architecture:
the source code. The workbench can be easily extended to experiment
with other Architecture Description Languages, Component Models, and
analysis languages.

1 Motivation

Current approaches for software architecture development propose to develop
software architecture specifications using sophisticated languages, to analyze the
architecture, and eventually to implement it using modern software component
technologies (cf. [I]). Following these best-practices thus leads to at least two
representations of the software architecture: the specification and the implemen-
tation. The specification is an abstract, precise description of the architecture,
which lacks implementation details. The implementation includes the architec-
ture and any other implementation detail of the software. Architecture analysis
can introduce further representations, when architectures are transformed into
analysis languages.

The simultaneous existence of more than one representation of the architec-
ture makes it harder to maintain because all representations have to be kept
consistent. Else, faults might be introduced during maintenance and evolution
when developers rely on outdated or false information. To avoid such faults,
we present a conceptual framework for software architecture, that ensures the
consistency between architecture representations.

M. Heisel (Ed.): Kramer Festschrift, LNCS 7365, pp. 36 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Conceptual Framework and Experimental Workbench for Architectures 37

The framework is accompanied by an experimental workbench. The experi-
mental workbench is the technical platform for the framework. It can be used for
experimenting with the features of the framework, and for viewing and editing
architectures in arbitrary Architecture Description Languages (ADLs) and Com-
ponent Models (CMs). In this work an ADL is any language used to describe a
software architecture on a higher level of abstraction than the implementation
code of current programming languages.

The remainder of this paper is structured as follows: In section 2] we discuss
how other approaches relate to the problem. In section [3] we present our frame-
work. Section @] presents the experimental workbench for software architectures,
which is based on the framework. Section Bl shows the benefits of the workbench
in a small example. We discuss our results and identify future work in section
before we conclude in section [7l

2 Related Work

Managing multiple representations of software design and specifically architec-
ture has been subject to other fields of research. Closely related to the paper
at hand is the field of Model-Driven Software Development (MDSD) (e.g. [2]),
model execution (e.g. [3/4]), and round trip engineering (e.g. [5]). In this context
we differentiate these approaches regarding the abstraction levels that they focus
on and the possibility of bidirectional transformations between representations
of the design or architecture.

In MDSD abstract domain specific models of the software to be developed
are created with domain experts. These domain models are refined with detailed
technical models that are not relevant to the domain, but to the platform that
will run the software. Such models are often the basis for automated code gen-
eration. The generated code has to be enriched with implementation details.
Model-Driven Architecture (MDA) [6] is a MDSD approach by the Object Man-
agement Group (OMG. In MDA Platform-Independent Models (PIM) are the
domain models. Platform-Definition Models (PDM) are the basis for translating
PIMs into Platform-Specific Models (PSM). PSM can be run on their corre-
sponding platform.

MDSD concentrates on deriving code from models. The specification (PIM,
PDM, and PSM) and the code are two representations of the architecture that
are independently subject to evolution and maintenance. Changes in the specifi-
cation can be taken over automatically in the implementation. When the archi-
tecture changes in the implementation, these changes cannot be automatically
taken over in the specification. MDSD bridges the gap between the abstraction
levels of the representations, but changes can only be carried over one way, from
the abstract specification to the detailed source code.

Model execution (e.g. Executable UML [34]) reduces the representations to
the specification. The specifying model is enriched with clear semantics. Thus
the models can be executed. In these approaches, typically less abstract models

! http://www.omg.org

http://www.omg.org

38 M. Konersmann and M. Goedicke

are used, that can be easily translated into programming language semantics,
e.g Unified Modeling Language (UML) class diagrams or state charts. Model
execution thus does not bridge the gap between abstraction levels.

Round trip engineering describes techniques to synchronize models and code.
Changes in the models can be automatically translated into the corresponding
code, and changes in the code can be automatically translated into the corre-
sponding model. The models used in round trip engineering are very detailed,
technical models, e.g. UML class diagrams [7] or state charts. Round trip en-
gineering thus allows for two-way synchronization, but does not bridge the gap
between abstraction levels.

In this section we have shown that the current approaches do not solve the
problem that we have identified in section[Il because the combination (1) bridg-
ing the gap between abstraction levels, and (2) allowing bi-directional synchro-
nization between code and model, is not addressed by these approaches.

3 A Conceptual Framework for Architectures

To address the problem, we now present a conceptual framework for architec-
tures. An overview of the artifacts of the framework and their relationships is
given in figure[ll The main goal of the framework is to support the maintenance
and evolution of software architectures. The development of the framework pur-
sues three objectives:

1. It is ensured that the architecture implementation and specification are con-
sistent.

2. The architecture can be viewed and edited using arbitrary ADLs and their
respective editors, and deployed using arbitrary CMs.

3. Analyses can be performed over the architecture to evaluate its quality and
validity.

transformation
e
1
transformation

‘ Analysis Languages ’ *

embedding
Intermediate Language | <<———> CMs
1

*

Fig. 1. Overview of the conceptual framework for architectures

The realization of objective [1l avoids that faults are introduced during mainte-
nance and evolution. As shown in section [2, having only the specification does
not solve the problem. In our framework the only persistent representation is
the implementation. In our approach we assume that the architecture will be
implemented using a well-defined CM, e.g. using Enterprise Java Beans [§] of
the Java Enterprise Edition (JEE) [9].

A Conceptual Framework and Experimental Workbench for Architectures 39

CMs and ADLs differ in their features and their abstraction level (cf. [I0]).
CMs include implementation details, and typically only define the structure of
the system formally. ADLs do not include implementation details, but typically
include aspects besides the structure, e.g. behaviour or quality (cf. [I0]).

Specification Level Model 1

Transformation

Program Code

Pattern Execution
Frame-

work

Implementation Level

[Other Code J

Program Code

Fig. 2. An overview of the embedded models approach: Model elements are represented
using program code patterns. The code patterns provide interfaces for interacting with
arbitrary other code. An execution engine understands the embedded specification and
executes the embedded model. (Source: [11])

To achieve objective [T the abstract architecture information of ADLs is ex-
plicitly integrated into the source code that forms the CM. This is performed
using the embedded models approach [II]. The architecture is thus explicitly
accessible at design time and at run time and at the same time specification
and implementation. In the embedded models approach rules are defined how
to systematically and explicitly integrate this information into the implemen-
tation, utilizing program code patterns. Figure [2 gives an overview about the
structure of the embedded models approach. Models in the specification level
are transformed into program code patterns on the implementation level. In
the architecture framework, the models on the specification level are the mod-
els expressed in ADLs. Program code patterns in the architecture framework
are based on the patterns introduced by the CMs in use, enhanced with in-
formation that cannot be expressed in the CM, e.g. utilizing typed meta data
such as annotations in Java [I2]. The program code patterns provide interfaces
to arbitrary program code that is not part of the architecture description, but

40 M. Konersmann and M. Goedicke

represents the implementation details. An execution framework is used to execute
the model code. In the architecture framework, the execution framework is based
on the existing execution frameworks of the CMs, e.g. application servers. These
have to be enhanced to understand the semantics of the embedded architecture
information. An example of an embedded model is given in section

The objectives [2 and [} are based on the observation that many different
ADLs, architecture analysis languages, and CMs exist and are used in practice.
The framework allows to develop software architectures using almost arbitrary
ADLs and CMs. To achieve this, the features of all considered ADLs need to be
embedded into each considered CM. However, many ADLs and CMs exist for
many different domains, and one can imagine that more will exist in the future.
Defining rules for embedding each ADL in each CM does not seem realistic, as
one definition for each pair would have to be created. The same holds for analysis
languages. Instead, we introduce an intermediate language that reduces the n:m
relationship to a n:1:m relationship. We create bidirectional mappings between
ADLs and the intermediate language, and unidirectional mappings between the
intermediate language and analysis languages. The intermediate language is
embedded into the CM’s source code.

ADLs and CMs both describe architectures, but they have different features
(cf. [10]). Within the group of ADLs and the group of CMs the features also
differ. The relationship between the ADLs and CMs via the intermediate lan-
guage has to reflect these differences. Features of ADLs and CMs that have
a direct equivalent in another representation can be used in both representa-
tions by defining a model transformation. When no equivalent exists, a complex
transformation should be defined that emulate the missing feature, if possible.
An example for a complex transformation is the feature of hierarchical archi-
tectures: In such architectures composite components have other components as
children. These children are hidden from the parent component’s context. The
interfaces of parent components are delegated to their children’s interfaces and
vice versa. The children are interconnected via their interfaces. When an ADL
is chosen that allows for hierarchical architectures and a CM is chosen that only
allows flat architectures, the CM does not have a direct equivalence of the parent
and child relationship. It might possible to emulate such a behaviour using only
the concepts available in the CM. In that case a complex transformation can be
used. If the feature cannot be emulated, the feature cannot be used in the first
place. If the feature is mandatory to be used (e.g. because it is a core concept of
the language), but it cannot be expressed in the second representation the rep-
resentations are incompatible. This means that choosing the first representation
excludes the latter from being chosen.

To consider this aspect, the meta model of the intermediate language is modu-
lar. In the framework this modularity is currently described using an orthogonal
variability model (OVM) [13| p. 72ff.]. When an ADL or a CM is chosen for
working with the architecture, the ADL’s or CM’s features define the configu-
ration of the variability model. The variability model defines which modules in

A Conceptual Framework and Experimental Workbench for Architectures 41

the meta model of the intermediate language are active, and which other repre-
sentations are compatible. Figure [3] shows an example of this dependency: The
features identified for ADLs and CMs include the variation point Component
Hierarchy. The variation point is expressed with a triangle. The variants of this
variability point are Hierarchical denoting a hierarchical component model, and
Flat, denoting the absence of hierarchy. The variants are mutually exclusive,
as denoted by the [1... 1] expression at the variation point. When choosing an
ADL with a hierarchical component model, the variant Hierarchical is activated.
Consequently the reference in the meta model of the intermediate language is
available.

List of Intermediate Language
ADLs Variability Model Meta Model
PCM , . has Child
Hierarchical
i l

Wright

L Component

xADL Component
Hierarchy

Fig. 3. The Intermediate Language has a variable meta model. Depending on the
chosen ADL or CM, features of the meta model are activated or not. The dashed
arrow from the list of ADLs to the variability model means that the ADL PCM has
a hierarchical component model. The dashed arrow from the variability model to the
meta model means that choosing the variant hierarchical enables the reference in the
meta model.

In this section we presented our conceptual framework for ADLs. In the next
section, we present an experimental workbench for architectures, which is based
on this framework.

4 An Experimental Workbench for Architectures

We developed an experimental workbench for architectures based on the concep-
tual framework. The workbench allows to experiment with architectures, using
different ADLs, CMs, and analyses. An overview of the workbench is given in
figure[l The core of the workbench is a Semantic MediaWiki (SMWE A seman-
tic wiki contains pages with informal information enriched with typed key-value
pairs of structured information (attributes). Pages can be grouped into cate-
gories. This semantic information can be subject to queries for systematically

2 http://semantic-mediawiki.org

http://semantic-mediawiki.org

42 M. Konersmann and M. Goedicke

finding information in the wiki. The wiki provides flexibility in the information
structure and a RESTH [14] interface for accessing the information with arbitrary
clients. This renders the SMW useful for experiments.

| | Palladio |<—— | IL2PCM
3 \ PCM2IL

UML Tool | «—
T UML2IL i i ‘

[P 1 element of figure 1

LTI Tool for ADL or Analysis,
Data Flow through
Analysis Languages I w U9 or Runtime

transformation
Transformation Tool
CDG AnaIyS|s IL2CDG
Tool

embed|L2EJB)-> !
parseEJB2IL 4

,,,,,, , membership to

_____ » Data Flow through
embedding /persing (") Embedding / Parse Tool

s
1
'
'
'
'
'
'
'
'
'
X

Fig. 4. Overview of the data flow in the experimental workbench for architectures

For representing architecture information in the wiki, we implemented a sim-
ple architecture language for the wiki consisting of categories for pages and
attributes. The language has the role of the intermediate language in our frame-
work. The language is presented in figure Bl and should be seen as initial ap-
proach for further experiments with the conceptual framework for architectures.
The language consists of components, interfaces, and operations. Operations are
atomic entities that have a name. Interfaces comprise a set of operations. Com-
ponents have required and provided interfaces, and common parameters, which
are required interfaces that are also provided (cf. [I5]). Components instantiate
child components that are identified by names. Thus a hierarchy of components is
defined. Child components are connected to each other using common interfaces.
This means that two components can be connected to each other when one pro-
vides the interface that the other component requires. Interfaces of children can
also be delegated by the parent. A delegated provided interface is not connected
to a required interface, but is provided by the parent to its context. Delegated
required interfaces of children are also required by the parent. Delegated com-
mon parameters of children are common parameters of the parent. With that
language, static structures of architectures can be defined. SMW allows arbitrary
additional attributes to be attached to pages.

The information in the wiki can be transformed into ADLs and into analysis lan-
guages. To address ADLs we implemented bidirectional transformations between
the intermediate language and a subset of the UML, and a subset of the Palladio
Component Model (PCM) [16]. Despite the name “Palladio Component Model”,

3 Representational State Transfer.

A Conceptual Framework and Experimental Workbench for Architectures 43

delegated interface
delegates

common parameter

>
>

Component| provided Interface | defines | operation

>

name name name

delegee

required

A

binding interface

hasChild

Fig. 5. The definition of the intermediate language in the semantic wiki. The rect-
angles represent categories of pages, with their attributes below. Rounded rectangles
represent so-called internal objects. These are attributes that can take multiple values
and references. The arrows between categories and between categories and internal
objects are references. The role of the reference is labeled at the arrow. The line be-
tween a category and an internal object shows that the internal object is defined by
the category.

the PCM is regarded as an ADL here, because it is used to describe architec-
tures on a higher level of abstraction than the implementation code. We can thus
transform architectures defined in the wiki into these languages, and use their
respective editors to modify the architecture. In the case of PCM, the Palladio
Simulator] can also be used to execute performance tests on the architecture.
These tests require more information than the current intermediate language
provides. When this information is given in PCM, and the architecture is trans-
formed into the intermediate language, this additional information is added to
the respective pages using attributes. Currently that information remains unused
in other representations.

To realize the transformation, we parse the wiki data and store it as an Ecore
model. Ecore is the meta model used in the Eclipse Modeling Framework (EMF)
[I7]. For UML an Ecore meta model exists in the Eclipse UML2 projectd. The
PCM meta model is also defined in Ecore using EMF (cf. [I8]). The transfor-
mations between the Ecore models is realized with ATL, the model-to-model
transformation tool of the Eclipse Modeling Projectﬁ.

To address analysis languages, a unidirectional transformation has been devel-
oped from the intermediate language to a simple component dependency graph
(CDG). The CDG is a directed graph that consists of components and depen-
dency relations between the components. Figure [0l shows an example of an ar-
chitecture and its CDG. The dependency relationship from component Shop to

4thttp://www.palladio-simulator.com
® http://www.eclipse.org/modeling/mdt/?project=uml 2#uml?2
Shttp://www.eclipse.org/modeling/

http://www.palladio-simulator.com
http://www.eclipse.org/modeling/mdt/?project=uml2#uml2
http://www.eclipse.org/modeling/

44 M. Konersmann and M. Goedicke

ShoppingCart means that Shop directly depends on ShoppingCart. A direct de-
pendency is defined as follows: When a component delegates a provided interface
to its child, then the parent directly depends on the child (e.g. WebShop and
Shop). When a child delegates a required interface to its parent, then the child
depends on the parent (e.g. ShoppingCart and WebShop. When a required in-
terface of a component A is connected to the provided equivalent of another
component B, then A directly depends on B (e.g. Shop and ShoppingCart. An
unconnected required interface is a dependency relationship to a node named
after the interface (e.g. WebShop and IDatabase. A dependency relationship is
typed with the interface that the dependency is based on. The CDG allows for
analyzing the architecture regarding cycles in the dependencies and unreachable
components, by using standard graph analysis techniques. As the CDG does not
carry all information that is relevant to the architecture, a bidirectional transfor-
mation is not possible. To realize the transformation between the intermediate
language and the CDG, we use the model transformation tool ATL. The CDG
is realized as an Ecore model.

composite structure Internal Structures /

|Shopping

|IDatabase

«delegates E'
WebShop «delegates

() IShopping |Database
|Database

ShoppingCart

IShoppingCart IDatabase ShoppingCart

IShoppingCart

Fig. 6. The left side shows an example architecture expressed in UML. The right side
shows its component dependency graph.

For executing the architectures defined in the intermediate language, we em-
bedded the intermediate language into Enterprise Java Beans (EJB) [8]. The
embedding ensures that the architecture definition is correctly and precisely im-
plemented, and that changes to the implemented architecture can be included
in the architecture definition in the wiki. In the following, the embedding of the
language shown in figure [l is described.

The component in the intermediate language is a page with a name. In EJB,
we chose to use singleton beans as components. Singleton beans exist exactly
once during the run time of the system. Using more than one component instance
is not possible using this pattern. The pattern is shown in figure [7l

A Conceptual Framework and Experimental Workbench for Architectures 45

composite structure Parent... /
S] @singleton
WebShop @LocalBean
4 public class WebShop {}
A

Fig. 7. The pattern for a component

Figure [8 shows the patterns for required and provided interfaces as well as
common parameters of components. Provided interfaces are represented as EJB
bean interfaces. Required interfaces are represented as required bean interfaces.
These required bean interfaces are injected by the execution environment. Com-
mon parameters are interfaces that are required and provided. Thus the interface
operations delegate the execution to the required interface. The pattern for an
interface and its operation is not shown. They are represented as interfaces and
their operations in Java.

@singleton
@LocalBean
cmnpoﬁksﬁucmrePNEMCth// public class WebShop implements IShopping, IBilling {
A

H -
IBilling - IShopRing - H .
e Pring @EJB»IDatabase iDatabase;

Web Shop : public%voi&\iBillingMethod(){

i iBilling.iBillingMethod();
i)
l IBilling J\IDahbeae

public void iShoppingMethod(){
// TODO: Not yet implemented
}

}

Fig. 8. The pattern for required and provided interfaces, and common parameters of
components

Figure [0 shows the pattern for child components with delegated provided in-
terfaces and delegated common parameter interfaces. Child components are are
injected to the parent using the EJB injection mechanism. Children and their in-
terfaces are in a Java package named after the parent. In addition to the pattern for
provided interfaces, the pattern for delegated provided interfaces delegates the ex-
ecution of the interface operations to the child component. Delegated common pa-
rameter interfaces also use this pattern, but additionally define and call a method
of the child component that provides to the child the reference to the implementing
bean.

46 M. Konersmann and M. Goedicke

@singleton
@LocalBean
public class WebShop implements IShopping, IBilling {

» @EJB webshop.Shop shop;

composite structure Parent-Child / @EJB IBilling iBilling;
S] public void buyProduct(int productID) {
b.Sh: et shop . buyProduct (productID) ;

s O_ﬁ }
IShopping
Ismmpmg. 1Billing public void bill(int amount)({
O =< -p»shop.bill (amount);
1Billing 4 Shap. Billing
1Billing }

«delegates

@PostConstruct

public void postConstruct() {
»shop.setIBilling(iBilling);
}

}

Fig.9. The pattern for child components with delegated provided and common
parameter interfaces

The pattern for a child component with delegated required interfaces is shown
in figure [0l The requiring child component has a method for receiving a bean
providing the required interface. The parent component uses the EJB injection
mechanism to obtain a such a bean. It then calls its child’s setter method.

In this section we presented a workbench for experimenting with software
architectures and for exploring the possibilities of the conceptual architecture
framework.

5 Working with the Workbench

In this section we present an example how to work with the experimental work-
bench presented above. The transformation and embedding steps are not shown
in this example because they are executed by command line programs. As a first
step we implemented a small example architecture in UML using the Eclipse
UML tool. The example architecture is shown on the left side of figure [l It
contains the composite component WebShop that provides the interface IShop-
ping and requires the interface IDatabase. The interface IBilling is a common
parameter. The interface IShopping and the common parameter IBilling are
delegated to the child component Shop. Another child component is Shopping-
Cart, which requires the interface IDatabase. This requirement is delegated to
the parent component. Shop and ShoppingCart are connected by the interface
IShoppingCart.

The architecture is then transformed into the intermediate language in the
SMW. Figure [[2] shows a screenshot of the WebShop component representation
in the SMW. The presentation of the data can be arbitrarily designed. As the
next step, the architecture is embedded into EJB source code. The representation
of the parent component in the resulting source code is shown on the right side

of figure [l

A Conceptual Framework and Experimental Workbench for Architectures 47

composite structure Parent... /
@singleton
@LocalBean
WebShop public class WebShop {
) @PostConstruct
frpeCat public void postConstruct() {
-.....jp-ShoppingCart.setIDatabase (iDatabase) ;
|Database }
e W .
i/ 1 @EJB IDatabase iDatabase;
J\mmﬂmﬁe @EJB webshop.ShoppingCart shoppingCart;
}

Fig. 10. The pattern for a component with a delegated required interface

During the evolution of the system a change in the architecture takes place:
The common parameter [Billing is now a provided interface delegated to a new
child component Billing. The change happens in the source code of the EJB
component model. The UML model and the EJB implementation of the new
architecture are shown in figure[I3l The right side of the figure shows the changed
EJB implementation. After transforming the embedded model into UML via the
intermediate language, the new architecture can be seen in UML on the left side
of figure

6 Discussion

In this section we discuss our ongoing work regarding the conceptual framework
and the experimental workbench, and the results presented in this paper.

6.1 Conceptual Framework

With the framework we strive to achieve three objectives. The first objective is
to ensure that the architecture implementation and specification are consistent.
To achieve this objective we use bidirectional transformations between ADLs
and the intermediate language, and the embedded models approach to integrate
the architectural information in the intermediate language with the source code
of CMs. Both techniques can be used to transfer information consistently. The
model transformation is a deeply researched and well understood field. However,
one has still to be careful when defining bidirectional transformations. Some
languages might have features that are hard to integrate with the features of
other languages. The embedded models approach is not that mature. Embedded
models are currently only researched regarding behavioural models, specifically
state machines and process models. Architecture definitions are more complex

48 M. Konersmann and M. Goedicke

@singleton
@LocalBean
public class WebShop implements IShopping, IBilling {

composite structure Internal Structures/J @PostConstruct
|Shopping IEhlhng IB\IIlng public void post':Construct() {
shop.setIShoppingCart(shoppingCart);
\DB'EDBSE shop.setIBilling(iBilling);
}
«delegatep «delegates $:|
udelega(e» bShop adelegates @EJB webshop.Shop shop;
IBilling
IBHImg @EJB webshop.ShoppingCart shoppingCart;
IShepping |Database
@EJB IBilling iBilling;
Shep ShoppingCart
|Shoppi QEJB IDatabase iDatabase;
IShoppingCart
public void buyProduct(int productID) {
shop.buyProduct (productID);
}

public void bill(int amount){
shop.bill(amount);

}

}

Fig.11. The example architecture in UML on the left side, and embedded into EJB
on the right side

than these models. Behavioural models are just one aspect of software archi-
tecture. Several viewpoints have also to be considered, e.g. static and dynamic
structure, communication, deployment, and quality aspects. The complexity of
architectural description is a challenge yet to address in the embedded models
approach.

The second objective is that the architecture can be viewed and edited using
arbitrary ADLs and their respective editors, and deployed using arbitrary CMs.
This objective is addressed by the intermediate language and the bidirectional
transformations between the ADLs and the intermediate language, as well as
the embedded models approach. Instead of defining patterns for embedding each
ADL in each CM, potentially in several programming languages, the intermediate
language is embedded into the CMs, and transformations are defined between
ADLs and the intermediate language. This reduces the effort for adding new
ADLs and CMs to work with the framework. However, the variability of the
intermediate language is a challenge. ADLs and CMs have different features, and
even a feature such as a component hierarchy may be differently realized. E.g. in
one ADL a child component is a static component that is defined in its parent.
In another ADL a child component may be a named instance of a component
that is defined in the same scope as the parent. This has to be addressed when
the variability model of the intermediate language is elaborated.

For the framework to be useful, it should be possible to adapt the intermediate
language to further progress in the area of architecture descriptions. To achieve
this, the intermediate language should be modular and thus allow extensions in
the future.

A Conceptual Framework and Experimental Workbench for Architectures 49

Set $wglogo

fo the URL Seite Diskussion

path to youlr

wown logo’

LAY WebShop
Requires |Database
Navigaton Provides I1Shopping
. Has Common Parameters IBilling

Hauptseite
Gemeinschafts-Portal Parent of this Component

Bkiell=tErelnis== [Has component Has name

Letzte Anderungen

Zufallige Seite = SrHBEETS Shop Shop
Hilfe ShoppingCart ShoppingCart
[Interface Requiring Child | 4 Providing Child
Werkzeuge Internal Compenent Binding
IShoppingCart | Shop ShoppingCart
Links auf diese Seite
Anderungen an [H Interface [+ Providing Child
verlinkten Seiten :
Datei hochladen Delegation IShepping Shep
Spezialseiten IDatabase ShoppingCart

Druckversion

Permanenter Link Kategorie: Component

Aftribute anzeigen

Fig. 12. The WebShop component of the example architecture in the SMW

The third objective is that analyses can be performed over the architecture
to evaluate its quality and validity. This is addressed by defining unidirectional
transformations between the intermediate language and analysis languages. Some
types of analysis can also be performed using ADLs, e.g. performance analyses
using the PCM. Some kinds of analysis can also be performed using the im-
plementation. E.g. stress tests using the embedded architecture and a stress
test driver. Here complex dependencies may be introduced for executing such
analyses: Some analyses, such as performance tests require detailed information
about the system’s behaviour and e.g. its deployment. Such information is only
available from some ADLs. These complex dependencies can be addressed by
identifying which variants of the meta model of the intermediate language are
necessary for an analysis language.

As we elaborated, the objectives stated in the beginning of this paper are
addressed and it seems we can successfully achieve the objectives. However,
we have found challenges to reach the objectives we have identified, that are
addressed in our ongoing work.

6.2 Experimental Workbench

The experimental workbench has been developed to experiment with, evaluate,
and refine the framework. The use of the SMW is helpful for testing new language
constructs, because it allows arbitrary data to be added to pages. However, the
language presented in this paper is far from being useful for realistic case studies

50

composite structure Internal Structures /

|Shapping 1Billing

«delegates

IShoppingCart

Shopping

|Database

xdelegates

ShoppingCart

IShoppingCy

M. Konersmann and M. Goedicke

@singleton
@LocalBean
public class WebShop implements IShopping,

@PostConstruct
|Database public void postConstruct() {
S] shop.setIShoppingCart(shoppingCart);
WebShop ¥
adelegates
IBilling @EJB Shop shop;

@EJB ShoppingCart shoppingCart;

@EJB Billing billing;

@EJB IDatabase iDatabase;

public void buyProduct(int productID) {

shop.buyProduct (productID);
}

1Billing {

public void bill(int amount)({
billing.bill(amount);

}

}

Fig. 13. The example architecture after the changes embedded into EJB on the right
side, and in UML on the left side

and needs to be refined. Also, the variability aspect of the intermediate language
is currently not taken into account in the SMW.

The architecture representation in the SMW contradicts the idea to have
only one persistent representation, because the architecture is persistent in the
code and in the SMW. In the long run, the SMW should not store persistent
architecture information. Instead, a transformation (bi- or unidirectional) could
be developed from the intermediate language that is embedded in a CM to the
SMW in terms of an ADL or analysis language. The SMW could provide a good
basis for documenting the architecture, as it allows for arbitrary information to
be added to elements, including informal text and figures.

7 Conclusion

We have presented our approach that helps to avoid faults due to inconsisten-
cies between architecture specifications and their implementation. In contrast
to related work shown in section [2] our approach is based on the idea to have
only the source code as persistent representation of the architecture, while still
bridging the gap between the different abstraction levels of the specification and
the implementation of software architecture. Using the embedded models ap-
proach, the architecture information is explicitly integrated in the source code
and accessible at design and at run time. The conceptual framework allows for
modifying the architecture with arbitrary Architecture Description Languages
and Component Models, as long as transformations and embedding mechanisms
have been defined for these languages. The modeled architecture can be analyzed

A Conceptual Framework and Experimental Workbench for Architectures 51

using languages that are embodied in the framework using transformations. An
intermediate language has been introduced to reduce the effort of defining trans-
formations between architecture descriptions.

We have also presented an experimental workbench for architectures that
is based on the conceptual framework. The workbench allows for experimenting
with architectures, and elaborate the framework. It uses a semantic wiki as a core,
that contains the architectural information and allows for arbitrary extensions
of the intermediate language. The workbench also includes a set of programs to
transform the architecture information into ADLs and analysis languages, and
to embed the architecture in CMs. Currently the workbench supports a subset
of UML and the Palladio Component Model as ADLs, a component dependency
graph as analysis language, and an embedding into Enterprise Java Beans as
Component Model. We showed how to use the workbench in a simple example.

As future work we plan to address the challenges identified in the discus-
sion in section [l In addition, we plan to develop a tool suite for unifying the
definition of transformations between the intermediate language and ADLs and
analysis languages. We also want to research more deeply the possible patterns
and mechanisms for embedding architecture information. Another challenge is
the question, how to manage the architecture when in one system more than one
ADL or CM is used.

References

1. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley Publishing (2009)

2. Brown, A., Conallen, J., Tropeano, D.: Introduction: Models, Modeling, and Model-
Driven Architecture (MDA) Model-Driven Software Development. In: Beydeda,
S., Book, M., Gruhn, V. (eds.) Model-Driven Software Development, pp. 1-16.
Springer, Berlin (2005)

3. Luz, M.P., da Silva, A.R.: Executing UML Models. In: 3rd Workshop in Software
Model Engineering, WiSME 2004 (2004)

4. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

5. Nickel, U.A., Niere, J., Wadsack, J.P., Ziindorf, A.: Roundtrip Engineering with
FUJABA. In: Proc of 2nd Workshop on Software-Reengineering (WSR), Bad
Honnef, Germany (2000)

6. Mukerji, J., Miller, J.: Technical Guide to Model Driven Architecture: The MDA
Guide v1.0.1. Technical report (2003)

7. OMG: OMG Unified Modeling LanguageTM (OMG UML), Superstructure,
Version 2.4.1, Object Management Group (August 2011)

8. Sun Microsystems, Inc.: JSR 318: Enterprise JavaBeans™3.1 (December 2009),
http://jcp.org/en/jsr/detail?id=318

9. Sun Microsystems, Inc.: JSR 316: Java™ Platform, Enterprise Edition 6 (Java EE
6) Specification (December 2009), http://jcp.org/en/jsr/detail?id=316

10. Miiller, M., Balz, M., Goedicke, M.: Representing Formal Component Models in
OSGi. In: Engels, G., Luckey, M., Schéfer, W. (eds.) Software Engineering. LNI,
vol. 159, pp. 45-56. GI (2010)

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=316

52

11.

12.

13.

14.

15.

16.

17.

18.

M. Konersmann and M. Goedicke

Balz, M.: Embedding Model Specifications in Object-Oriented Program Code: A
Bottom-up Approach for Model-based Software Development. PhD thesis, Univer-
sitat Duisburg-Essen (May 2011)

Sun Microsystems, Inc.: JSR 175: A Metadata Facility for the JavaT™Programming
Language (2004), http://jcp.org/en/jsr/detail?id=175

Pohl, K., Bockle, G., van der Linden, F.: Software product line engineering -
foundations, principles, and techniques. Springer (2005)

Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000),
http://www.ics.uci.edu/"fielding/pubs/dissertation/top.htm

Schumann, H., Goedicke, M.: Component-oriented software development with
pi. Technical Report 1/94, Department of Mathematics and Computer Science,
University of Essen (1994)

Reussner, R., Becker, S., Happe, J., Koziolek, H., Krogmann, K., Kuperberg, M.:
The Palladio Component Model. Technical report, Chair for Software Design &
Quality (SDQ), University of Karlsruhe (TH), Germany (May 2007)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional (2009)

Becker, S., Koziolek, H., Reussner, R.: Model-Based Performance Prediction with
the Palladio Component Model. In: Proceedings of the 6th International Workshop
on Software and Performance, WOSP 2007, pp. 54-65. ACM, New York (2007)

http://jcp.org/en/jsr/detail?id=175
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

	A Conceptual Framework and Experimental Workbench for Architectures
	Motivation
	Related Work
	A Conceptual Framework for Architectures
	An Experimental Workbench for Architectures
	Working with the Workbench
	Discussion
	Conceptual Framework
	Experimental Workbench

	Conclusion

