
Integrating Protocol Contracts with Java Code

Marco Konersmann, Noyan Kurt, Michael Goedicke
plauno - The Ruhr Institute for Software Technology

University of Duisburg-Essen
Gerlingstraße 16, 45127 Essen, Germany

{marco.konersmann, noyan.kurt, michael.goedicke}@paluno.uni-due.de

ABSTRACT
Long-living software faces the developers with challenges of
program understanding. This is intensified by the problem
of often outdated or missing documentation. When up-to-
date models are available, programs are easier to under-
stand. To achieve this, we present our integrated Protocol
Contracts. Integrated Protocol Contracts are a behaviour
model type that is integrated with the source code of pro-
grams. The code is thoroughly intertwined with the code,
so that the model can always be reliably extracted from the
code.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.3 [Software Engineering]: Coding Tools and
Techniques—Program editors

General Terms
Design

Keywords
Protocol Contracts, Behaviour Modeling, Architecture-Car-
rying Software, Knowledge-Carrying Code

1. MOTIVATION
When long-living software evolves, developers need to un-
derstand the software and the code structures that build
the software. It seems to be easier to understand abstract
models of the code, than the code itself. However, during
the evolution of long-living software, models tend to become
outdated or might be missing.

Our approach to this problem is to integrate model specifica-
tions into the source code of programs. With this approach,
the models can be reliably extracted from the code. We call
this approach Architecture-Carrying Software (ACS) [5]. In
ACS we integrate static structure models, including compo-
nent models, and behaviour models with source code that

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
BM-FA ’14, July 22 2014, York, United Kingdom

http://dx.doi.org/10.1145/2630768.2630771.

complies with component frameworks. Other models, in-
cluding quality information and deployment information are
planned to be added.

Currently, the behaviour model included in ACS is a batch-
oriented state machine (see [1]). This batch-oriented model
is, however, not suitable for many applications, because of-
ten one wants to interactively influence the behaviour of a
subsystem. In this paper, we present our ongoing work,
where we integrate Protocol Contracts with ACS.

2. CONCEPTUAL FOUNDATIONS
2.1 Protocol Contracts
Protocol Contracts [7, 6] describe event-driven, state-based
behaviour of object models. In a Protocol Contract, events
are presented to protocol models. Protocol Models react to
events by accepting them and changing their state, or by
refusing them. In the following, we will briefly introduce
Protocol Contracts as they are described in [7]. An example
of a protocol model is shown in figure 1.

2.1.1 Events
Events in Protocol Contracts are typed. An event type has
a name and attributes. Event attributes are also typed. At-
tribute types are the usual primitive types of programming
language. This especially includes integers, floating point
numbers, booleans, and strings. In addition, attributes can
have the type of an object. An example is the event of the
type Deposit in figure 1. This event type defines an attribute
date of deposit of the type Date, an attribute amount of the
type Currency, and an attribute into, which is a reference
to an object to be affected by this event. An event type is
instantiated to an event instance (also called event in this
paper) by setting attribute values.

2.1.2 Protocol Machines
Protocol machines describe a deterministic behaviour con-
tract for objects. They can be built up either by states and
rules how to change the states in reaction to events, or by
comprising other protocol machines. The first are called el-
ementary machines.

Elementary machines have a stored state. The stored state
consists of typed variables, including an implicit state vari-
able (just state variable from now on). The variables work
analogously to attributes in objects of object-oriented pro-
gramming languages like Java. The state variable represents



Figure 1: An example system specified as Protocol Contract (Source: [6])

a finite set of possible states, that a protocol machine can
be in. The value of a state variable can be determined by
the sequence of events, that the machine accepted (so called
topological states), as it is known from UML state machines
[9, page 535 ff.], or by a state function that is evaluated
when a event is presented to the machine.

Non-elementary machines are built by nested non-elementa-
ry and eventually by elementary machines. They build their
stored states based on the stored states of the nested ma-
chines. A nested machine can read and write its own stored
state. It can read the stored state of all other machines in its
environment. The environment of a machine is built by the
stored states of its parent machines and all of their parents’
nested machines.

Protocol machines have a repertoire, that describes which
events are accepted or rejected. Events that are neither ac-
cepted nor rejected are ignored. Repertoire entries include:

1. an event type,

2. a reference to an object that is represented by this
machine,

3. a role in which the machine accepts the event type,

4. a boolean expression based on the machine’s stored
state, that has to evaluate to true before the event is
processed (the “test”)

5. a term that expresses the update to the machine’s
stored state when the event is processed

The role is important when an event references several simi-
lar machines. E.g. the event Transfer (see figure 1) transfers
money from one bank account to another. This event refer-
ences one account in the role source, and another account in
the role target.

An event is accepted by a machine, if (1) it has a reper-
toire entry for the given event type, (2) it represents exactly
one object that is referenced by the event, (3) in the role
stated by the object reference in the event, and (4) the test
is evaluated to true. If the test evaluates to false, the event
is rejected. In any other case the event is ignored.

Non-elementary machines reject an event when any nested
machine rejects the event. When all nested machines ignore
the event, the non-elementary machine ignores the event.
When at least one nested machines accepts the event and
all other nested machines accept or ignore the event, the
event is accepted.

2.1.3 Protocol Systems
Protocol systems compose protocol machines in terms of
Communicating Sequential Processes (CSP) [4]. Protocol
systems themselves have no stored state, event types, and
referenced object. Their repertoire and their references to
objects are built by their composed machines. A protocol
machine that is composed by a protocol system has read ac-
cess to the attributes of all other protocol machines within
the system. Protocol systems can themselves be subject to
composition by other protocol systems.



2.1.4 Protocol Models
Protocol models are protocol machines that are not nested
or composed by any other protocol machine or system. They
describe the complete, self-enclosed behavior of the objects
they represent.

2.2 Architecture-Carrying Software
The idea of Architecture-Carrying Software (ACS) [5] is to
represent architectural models in source code with sophis-
ticated code structures. Architecture-Carrying means that
the software itself carries its architecture information, with-
out the need for adjacent models that are separate from the
code.

The code structures that represent models in ACS only de-
fine architecturally relevant code. Therefore they include
interfaces to execute arbitrary other, non-architectural code.

These code structures are not meant to be directly changed
with source code editors, but with model editors. These
model editors allow to edit the architecture in a represen-
tation that software architects are comfortable with, e.g.
UML or formal specification languages. The editor extracts
the architecture from the underlying code base and presents
a model to interact with. Changes to the model are reflected
by changes to the underlying code base. The model view is
volatile. It only exists as long as the model editor is in use.
With ACS, the architecture model is available at compile
time as source code structures and at run time via reflection
mechanisms.

The code can still be viewed and edited with text editors.
The source code representing models should be edited with
respect to the ACS code structure definitions. Code that
does not represent the models can still be edited freely.

Currently, the only behaviour model included in ACS is a
batch-oriented state machine (see [1]). This batch-oriented
model is, however, not suitable for many applications, be-
cause usually one wants to interactively influence the be-
haviour. In this paper, we present our ongoing work how we
integrate Protocol Contracts with ACS.

3. MODEL INTEGRATION
For adding new behaviour models to ACS the following arte-
facts are necessary:

1. a meta model of the model type to integrate,

2. integration mechanisms for a specific framework or lan-
guage,

3. a runtime to execute the model,

4. an editor to inspect and change the model in a model
view.

In the following we present the meta model and the inte-
gration mechanisms for Protocol Contracts in the Java pro-
gramming language. We also give an outlook on towards an
execution runtime for the model.

3.1 Meta Model Implementation
The ACS prototype is implemented in Java and based on
Ecore models1. Therefore, the meta model is implemented
in Ecore. In this section, we describe the meta model for
our implementation of Protocol Contracts, which is based
on the description from McNeile and Simons [7].

3.1.1 Machine Types
There are two machine types represented in our meta model.
One is Protocol Machine, while the other is the Protocol
System. In our model (figure 2) a ProtocolSystem always
composes at least two machines. If a system composes an-
other system, the system it composes, again, has to contain
at least two machines. Therefore, the class ProtocolSystem
represent a shell for ProtocolMachine instances.

Figure 2: Machine types in the Protocol Contracts
meta model

The ProtocolMachine contains 1 statetype, at least 1 reper-
toire entry, if necessary a role, and again at least 1 event-
Type (see figure 3): The state type defines the type of the
machine, i.e. whether the machine defines topological states
(StoredStateType in our model), or a state function (Derived-
StateType in the model). Both types may have a number of
states. However, the DerivedStateType also has a StateFunc-
tion which contains an attribute spec of the type EString (an
Ecore representation of a Java String), specifying its func-
tion in terms of Java source code.

The repertoire, that each machine contains, is formed by the
repertoire entries in our model. The event type and role of

1for information on Ecore, please see [11]

Figure 3: The repertoire of protocol machines in the
Protocol Contracts meta model



Figure 4: Event types and events in the Protocol
Contracts meta model

the repertoire entry are represented as references to the re-
spective model elements. The updates defined by repertoire
entries are also determined in the entries. Each entry knows
the beforeState and the nextState, if applicable. This rep-
resents the update of the state variable. Furthermore, the
RepertoireEntry contains the operation getAcceptance() and
an attribute updateSpec. The operation getAcceptance() re-
turns the value ignored, accepted, or refused, when an event
is presented to the machine. The updateSpec determines,
similarly to spec in the StateFunction, the update operation.

The class EventType (see figure 4) may contain EventAt-
tributes with the attribute type, being of the type of a Java
class. In addition to that, of each EventType, we can cre-
ate EventInstances, which know their type. Again, this
EventInstance may contain EventAttributeInstances, which
represent the EventAttributes. Furthermore, the EventType
may contain a Role2ObjectEntry, which binds the Role in an
event type to a PCObjectType.

In parallel to the class EventType, we also can create a Proto-
colMachineInstance of the type ProtocolMachine (see figure
5). A ProtocolMachineInstance may contain a MachineAt-
tributeInstance. This represents the instantiation of protocol
machines during the run time of the system.

The PCObjectType in our model represents the object ref-
erenced by a machine. When a ProtocolMachineInstance of
a ProtocolMachine is created, a oid must be assigned to the
machine instance. The ProtocolMachineInstance also may
know its currentState.

3.2 Integration Mechanisms
For describing Protocol Contracts as model type for ACS,
source code structures for the meta model elements have to
be defined. In the following sections, we describe the source
code structures that represent Protocol Contracts in Java
code. Here we only describe source code structures for type
level elements. Elements that represent the instantiation of
machines and events are only used by the model execution
runtime.

Figure 5: Protocol machine attributes and their in-
stantiation in the Protocol Contracts meta model

3.2.1 Protocol Machine
A protocol machine is represented in Java code as a Java
package that includes a class which implements a marker
interface IProtocolMachine. We call this class the Protocol
Machine Class (or just Machine Class). A marker interface
is an interface without any operations, that only exists to
mark classes. Only one Machine Class is allowed within a
Java package. Other classes that define the protocol machine
(as shown in the following) also reside within this package
or subpackages2. Other classes, unrelated to the protocol
machine, may also reside in that package, although we do
not recommend that.

The Machine Class also includes a reference to the object
type that is represented by the machine. It is an attribtue
in the class definition called oid. The object type of the oid
is a simple Java class. The type of the attribute is that class.
The variable is also marked with a MachineOID annotation
for convenience.

3.2.2 Machine Attributes
Machine attributes are represented as a variable with the re-
spective type, a get method, and a set method. A Variable
Class contains the stored state (excluding the state variable)
and the corresponding get and set methods. The methods
are also represented in interfaces: one interface for get meth-
ods, the Read Interface, and one interface for set methods,
the Write Interface. These interfaces are entry points for
changing and reading the attributes. The Variable Class
implements these interfaces.

A third interface, the Context Interface, defines the envi-
ronment of the machine. For a single protocol machine, the
Context Interface extends the Read Interface and the Write
Interface of the machine. The Machine Class contains a vari-
able with the type of the Context Interface as a reference to
its environment. Due to the interface and class structure de-
scribed above, the Context Interface allows for reading and

2This is actually a recommendation, not a requirement. For
protocol machines with more than 3 or four states, we found
it practical to use subpackages for structuring reasons.



public class MachineName implements IProtocolMachine {

Class<? extends AbstractPCState<AccountObject>>
currentState = null;

@MachineOID
PCObjectTypeName oid;

@MachineContext(
localState = MachineNameVariable.class,
localStateRead = IReadableVariable.class,
localStateWrite = IWritableVariable.class)

IContext context;
}

Listing 1: The source code structure for a Proto-
col Machine Class with the reference to a Machine
Attribute Class

public class StateName
extends AbstractPCState<PCObjectType> { }

Listing 2: The source code structure for a state

writing the stored state of the machine. An annotation on
the variable states the Read Interface, the Write Interface,
and the Variable Class. Listing 1 shows how the Machine
Class is built with the Variable Class.

3.2.3 States
States are represented as a Java class that extends the ab-
stract class AbstractPCState (see listing 2). The name of the
state is represented by the class name. The class extends the
abstract class AbstractPCState. That abstract class has a
type parameter that represents the oid type of the machine.

AbstractPCState has an oid reference to an object of the
type IActor. This is the interface to arbitrary, non-architec-
tural code. Therefore each state also contains the informa-
tion, which object the machine represents.

3.2.4 State Variable
The state variable in Protocol Contracts can be built in two
ways. In topological state protocol machines, the state vari-
able is determined by the initial state and the updates. In
derived state protocol machines, the state variable is derived
using a state function.

Machine Classes of topological state protocol machines con-
tain a variable currentState of the type Class<? extends
AbstractPCState>. It thus references a class that represents
a state (see listing 1).

Machine Classes of derived state protocol machines contain
a method getCurrentState() to evaluate the state variable.
The method returns Class<? extends AbstractPCState>,
i.e. the reference to the class that represents the current
state. The method’s body implements the state function.

3.2.5 Roles and Event Types
Roles are represented as classes implementing the marker
interface IRole. An event type is represented in the source
code as Event Type Class. This is a class implementing the

public class EventTypeName implements IEventType {

ObjectClassName roleName;

AttributeType attribtueName;

// getters and setters
}

Listing 3: The source code structure for event types,
including event attributes and roles

marker interface IEventType. Event types contain two types
of meta data: (1) event attributes, and (2) roles and object
references.

Event attributes are represented as object variables in the
class with the corresponding type. The attribute name is
represented by the name of the variable. The variable is
complemented by a get and a set method.

PCObjectTypes are represented as Java classes. Therefore,
roles and object references can be represented by variables
with the corresponding class as variable type, and the role
as variable name. These variables are also complemented
by corresponding get and set methods. Listing 3 shows the
source code structure for an Event Type Class.

3.2.6 Repertoire Entries
Repertoire entries define the following data: (1) an event
type, (2) a referenced object, (3) a role for which the event
type is accepted, (4) a test, and (5) an update specification.
In the source code these are represented as annotated meth-
ods (Repertoire Entry Methods), as shown in listing 4. The
methods are contained by State Classes or a Protocol Ma-
chine Class. The test is defined by the class that implements
the method. When a State Class implements the method,
that state is the necessary source state. When a Protocol
Machine Class implements the method, the source state is
the initial pseudo state. When a Protocol System Class
implements the method, there is no necessary source state.
The method’s parameters are a reference to an Event Type
Class object (event), a reference to an object of the Context
Interface (context), and a Role Class (role). The parameter
event represents the event type. The context parameter is
used for the update specification. The role is given by the
type of the parameter (role). The next state is given in the
method’s annotation as a class reference.

Both, the Machine Class and the State Class have an at-
tribute oid that is the reference to the object defined by
the machine. Here the attribute acts as an interface to non-
architectural code. Within the update specification, opera-
tions to the oid can be called. The semantics of the executed
operations of the oid are not part of the model.

3.2.7 Protocol Systems
The source code representation of a protocol system is a
Protocol System Class (see listing 5). Such a class imple-
ments the marker interface IProtocolMachine, just as Proto-
col Machine Classes. In addition, Protocol System Classes
are annotated with the annotation ProtocolSystem, which
takes a list of classes as parameter, that extend the IProto-



@RepertoireEntry(nextState = StateName.class)
public void eventTypeName(EventTypeName event,

IContext context, RoleName role){
// Update Specification

}

Listing 4: The source code structure for repertoire
entries

@ProtocolSystem({ MachineName.class, ... })
public class ProtocolSystemName

implements IProtocolMachine {

@SystemEnvironment
ISystemContext context;

}

Listing 5: The source structure for Protocol Systems

colMachine interface. One package may only contain either
one Protocol System Class or one Protocol Machine Class.
Subpackages may contain further Protocol Machines or Sys-
tems.

Protocol Systems influence the environment of their refer-
enced protocol machines and systems. To represent this in-
fluence, each Protocol System Class is accompanied by a
System Context Interface. This interface extends the Read
Interfaces of its composed protocol machines and the Sys-
tem Context Interfaces of its composed protocol systems.
The System Context Interface is an attribute of the Proto-
col System Class, annotated with an annotation SystemEn-
vironment.

When a protocol machine is composed by a protocol system,
the machine can read variables from all machines composed
in the system. To reflect this, the machine’s Context In-
terface replaces the extension of its Read Interface with the
System Context Interface of the highest Protocol System in
the composition hierarchy (see figure 6).

3.2.8 Protocol Models
Protocol models are protocol machines that are not nested
or composed by any other protocol machine or system. This
can be evaluated from the machine context. Thus no explicit
source code structures exist for protocol models.

3.3 Runtime
The Protocol Contracts meta model is executable. The run-
time, however, is not finished yet. The runtime will extract
model information from source code structures using Java
reflection mechanisms and a pattern matching algorithm.
The protocol model is then available as Ecore model. The
runtime manages the model. I.e. it provides interfaces for
clients to interact with the protocol model.

For executing the model, the runtime provides an interface
for creating instances of the class EventTypeInstance. These
event instances can then sent to another interface, and thus
be represented to protocol models managed in the runtime.
The runtime uses the model information at runtime, e.g. to
switch the stored states, and uses calls to the operations of

Figure 6: The given interface and class structure
ensures that the variables of all composed machine
are readable by every machine in the system, and
that each machine can only alter its own variables.

the source code structures for executing update specifica-
tions.

These calls enable the source code structures to contain in-
terfaces to non-model code. The update specification of a
repertoire entry may contain calls to the underlying object
using the attribtue oid. The update specification is en-
coded as Java method, which is called by the runtime in
an inversion-of-control pattern. When the control flow hits
the underlying object, arbitrary, architecturally irrelevant
code can be executed.

4. EXAMPLE
To show the functionality of our meta model and source code
structures, we implemented a desktop example. Our exam-
ple is an implementation of the Bank Model example given
in [6]. The model of the example system is shown in figure
1. We will here only show parts of the example that differ
enough to show the different working concepts. We there-
fore show here our implementation of account machine 1, a
protocol machine with topological states; account machine
4, a protocol machine with derived states; and the account
system, a protocol system.

4.1 Account Machine 1
Account machine 1 (AM1) is a protocol machine with topo-
logical states. All of the classes for AM1 are placed in the
same Java package. Figure 7 gives an overview of the classes
and interfaces in the package. The Protocol Machine Class
for AM1 is depicted in listing 6.

The Protocol Machine Class of AM1 defines one repertoire
entry from the pseudo state — here represented by the con-
tainment relationship from the Protocol Machine Class to
the method — to the State Active. The body of the method
open shows the update specification. Figure 8 shows the
class structure of the machine attributes for AM1 (without
the influence of the system, that composes the machine).
The interfaces shown in this figure contain get and set meth-



Figure 7: The package structure of protocol machine
for Account Machine 1. The annotations mean: (E)
Event Type Classes; (M) Machine Class, Variable
Class and interfaces; (O) Referenced Object classes;
(R) Role Classes; (S) State Classes. The c in a circle
denotes a class. The i in a circle denotes an interface.

public class AccountMachine1
implements IProtocolMachine {

Class<? extends AbstractPCState<AccountObject>>
currentState = null;

@MachineOID
AccountObject oid;

@MachineContext(
localState = AccountMachine1VariablesImpl.class,
localStateRead = IReadableVariables.class,
localStateWrite = IWritableVariables.class)

IContext context;

@RepertoireEntry(nextState = Active.class)
public void open(Open event,

IContext context, Account role) {
context.setBalance(0);
context.setOwner(event.getCustomer());

}
}

Listing 6: The implementation of the Protocol Ma-
chine Class for Account Machine 1

public class AccountMachine1VariablesImpl
implements IReadableVariables,

IWritableVariables {
int balance;

CustomerObject owner;

// getters and setters

}

Listing 7: The machine attribute class of Account
Machine 1

public class Open implements IEventType {

Date dateOfOpen;

AccountObject account;

CustomerObject owner;

// getters and setters

}

Listing 8: The Event Type Class of the event type
Open of Account Machine 1

ods according to their task. The implementing class is shown
in listing 7.

Figure 8: The class structure for the machine at-
tributes of Account Machine 1

The Event Type Class of Open is shown in listing 8. It con-
tains the attributes and roles prescribed by the specification
in in terms of attributes, get methods, and set methods.

The State Class of the state Active is shown in listing 9.
It includes repertoire entry methods for all accepted events
as described in figure 1. Our source code structure however
does not allow to create an entry with the same update
and target state, but with multiple event types and roles
without copies of the update specification. We need multiple
methods to represent this structure.



public class Active
extends AbstractPCState<AccountObject> {

@RepertoireEntry(nextState = Active.class)
public void transfer(Transfer event,

IContext context, Target role) {
context.setBalance(

context.getBalance() + event.getAmount());
}

@RepertoireEntry(nextState = Active.class)
public void deposit(Deposit event,

IContext context, Into role) {
context.setBalance(

context.getBalance() + event.getAmount());
}

@RepertoireEntry(nextState = Active.class)
public void transfer(Transfer event,

IContext context, Source role) {
context.setBalance(

context.getBalance() - event.getAmount());
}

@RepertoireEntry(nextState = Active.class)
public void withdraw(Withdraw event,

IContext context, From role) {
context.setBalance(

context.getBalance() - event.getAmount());
}

@RepertoireEntry(nextState = Closed.class)
public void close(Close event,

IContext context, Account role) {
}

}

Listing 9: The Active state of Account Machine 1

Some classes are not shown in detail here. The Role Classes
implement the Interface IRole, but do not contain any meth-
ods or attributes. The Event Type Classes that are not
shown are built accordingly to the Event Type Open in the
obvious way.

4.2 Account Machine 4
Account Machine 4 (AM4) is a protocol machine with a de-
rived state. Thus its structure differs slightly from AM1.
Figure 9 gives an overview of the classes and interfaces in
the package. The package does not contain Role Classes
or Event Type Classes, because the machine relies on the
classes already stated by AM1. The Protocol Machine Class
for AM4 is depicted in listing 10. It especially contains
the State Function Method getCurrentState, which shows
the implementation of the state function in Java. All other
classes are built in the ways already stated and do not in-
clude anything surprising.

4.3 Bank System
The protocol system Account System (AS) composes AM1
to AM4 (AM2 and AM3 are not shown in this paper). Fol-
lowing the source code structures defined in section 3.2, the
AS consists of one Protocol System Class (listing 11) and
the System Context Interface, which is an interface without
any own operations. Figure 10 shows how the class struc-
ture is influenced by the system. IContext of AM1 no longer
extends the Read Interface of AM1, but the ISystemContext
of the AS. The ISystemContext extends the Read Interfaces
of all composed machines (only AM1 and AM4 are shown in

public class AccountMachine4
implements IProtocolMachine {

@MachineOID
Account oid;

@MachineContext(
localState = AccountMachine4VariablesImpl.class,
localStateRead = IReadableVariables.class,
localStateWrite = IWritableVariables.class )

IContext context;

public Class
<? extends AbstractPCState<AccountObject>>
getCurrentState() {

if (context.getBalance() < -50)
return OverLimit.class;

else
return WithinLimit.class;

}

@RepertoireEntry(nextState = WithinLimit.class)
public void withdraw(Withdraw event,

IContext context, From role) {
}

}

Listing 10: The implementation of the Protocol Ma-
chine Class for Account Machine 4

this figure). Therefore each machine has read access to all
variables in the environment.

5. DISCUSSION
Our integration of Protocol Contracts follows several design
decisions. The main variation points are the meta model and
the integration mechanisms. The meta model was designed
to be close at the description in [7]. As some parts of the
example were not completely described, we cannot be sure
that the meta model is in a final version. We also expect
the meta model to slightly change during the development
of the runtime, when we get new insights about the instance
level.

Two attributes in the model are strings without semantics.
The attribute spec in the class StateFunction, and the at-
tribute updateSpec in the class RepertoireEntry. Both con-
tain Java source code that is part of the model definition.
We need to evaluate whether we will represent the expres-
sions encoded there in more semantically rich forms.

Figure 9: The package structure of protocol machine
for Account Machine 4. The annotations mean: (M)
Machine Class, Variable Class and interfaces; (S)
State Classes. The c in a circle denotes a class. The
i in a circle denotes an interface.



@ProtocolSystem({ AccountMachine1.class,
AccountMachine2.class,
AccountMachine3.class,
AccountMachine4.class })

public class BankAccountSystem
implements IProtocolMachine {

@SystemEnvironment
ISystemContext context;

}

Listing 11: The source code of the Protocol System
Class of the Bank Account System

Figure 10: The composition by the Account Sys-
tem has an influence on the source code structure of
the Account Machine 1. IContext no longer extends
IReadableInterface, but the ISystemContext. The
ISystemContext extends the Read Interfaces of all
composed machines (only AM1 and AM4 are shown
in this figure). Therefore each machine has read ac-
cess to all variables in the environment.

The work presented in this paper are part of the research
project ADVERT3 that aims at using Architecture-Carrying
Software for solving evolution challenges in long-living soft-
ware. We plan to integrate the meta model for Protocol
Contracts with the meta model for architecture descriptions
from this research project. Therefore we also expect slight
changes to the meta model for integration purposes.

The integration mechanisms presented in this paper are de-
signed for Java programs. The model execution is event-
based. One could possibly create other integration mech-
anisms that better integrates with already existing event-
based communication frameworks. In the research project
mentioned before, we provide integration paths to multiple
runtime frameworks. Therefore we expect to create other
integration mechanisms. These can, however, base largely
on the mechanisms presented in this paper.

3http://advert-project.org

6. FUTURE WORK
This paper presents our work in an early stadium. As future
work, we plan to further evaluate the concept and implemen-
tation, and integrate it in our framework for Architecture-
Carrying Software. This includes that the Protocol Con-
tracts are included into an existing architecture-modeling
language. The architecture languages, on which ACS is
based, typically have components and their interconnections
as first-class entities. We intend to create a mapping from
oids to component instances, and object types to compo-
nent types. We can then define the behaviour of component
types with Protocol Contracts. The interfaces to arbitrary
code play an important role here, to allow for behaviour that
should not be modeled on an architectural level. However,
some details of the integration still have to be inspected.

Furthermore an editor will be created for the Protocol Con-
tracts based on our meta model that enables to edit the
models at design time and inspect and debug them at run
time. The next step however is the development of a model
execution runtime.

7. EVALUATION PLAN
7.1 Functionality
Our meta model and source code fragments have been eval-
uated for functionality in a desktop example (see section 4).
First we created a model from the meta model that repre-
sents the example system shown in [6]. Then we manually
created source code following the defined structures. By
construction, the example shows that the source code struc-
tures are suitable to represent the model. The completeness
of the model shows that the meta model is suitable for Pro-
tocol Contracts, as they are necessary for the given example
system.

The meta model is not complete yet. We did not evalu-
ate whether our meta model and source code structures are
suitable to represent nested protocol machines, since the ex-
ample in [6] does not contain this structure.

We also did not evaluate our instance level meta model ele-
ments, because the model execution runtime does not exist
yet.

7.2 Ease of Understanding
The work presented in this paper is embedded into a re-
search project where we build Architecture-Carrying Soft-
ware. This technique allows the software to be shown and
edited at design time, and inspected and debugged at run
time, based on models. We plan to develop an editor for
editing Protocol Contracts at design time, and to inspect
and debug them at run time.

Our hypothesis is that this editor, in combination with the
integrated Protocol Contracts, allows understand the soft-
ware behaviour more easily than manually written or gener-
ated code with adjacend models. To evaluate this hypothe-
sis, we plan to execute a study with students in a controlled
experiment. The students will be presented two existing
programs that have to be extended due to change requests.
The programs will be functionally equal. One program is
developed using our Protocol Contracts runtime and editor



(T1). The other program will be developed without our run-
time and editor (T2). Each student will have to edit both
programs with the same change requests. One half of the
students group will start with T1, the other half will start
with T2. We plan to monitor the time necessary to execute
the changes.

Another study in an equal setup is planned for run time de-
bugging. This study differs in the task. Instead of changing
the functionality of the program, the students will be faced
with the task to identify and solve a bug that is visible due
to a run time error.

8. RELATED WORK
Related work to ours can be found for several aspects. Balz
already created an integration for a behaviour model in his
PhD thesis [1]. He integrates state machine models. His im-
plementation of state machine models is working in a batch-
like mode. I.e. a state machine is started and is executed
until it terminates. The integration of Protocol Contracts
is working interactively by generating events and presenting
them to the protocol model.

Managing multiple representations of software design and
specifically architecture has been subject to other fields of
research. Related to the paper at hand is the field of Model-
Driven Development (MDD) (e.g. [3, 10]) and round trip
engineering (e.g. [8]).

MDD concentrates on deriving code from models. The mod-
els and the code are two representations of the program that
are independently subject to evolution and maintenance.
Changes in the specification can be taken over automati-
cally in the implementation. When the program changes in
the implementation, these changes cannot be automatically
taken over in the specification.

Round trip engineering (RTE) describes techniques to syn-
chronize models and code. The models used in RTE are very
detailed and technical, e.g. UML class diagrams. RTE thus
allows for two-way synchronization, but does not bridge the
gap between abstraction levels, as our approach does.

The work presented here can be seen as part of models@run-
time [2]. We have models with a high abstraction level that
are not tied to the underlying technology. We have a tech-
nology specific runtime to execute the models. In addition,
we have defined intefaces between the model and arbitrary
source code.

A runtime for Protocol Contracts already exists (see [6]). We
did not find extensive information about that runtime. For
our runtime we plan to allow for inspecting and debugging
of running Protocol Contracts at run time. Itis not clear
from [6] whether this is possible with the already existing
runtime.

9. CONCLUSION
In this paper we presented how we integrate Protocol Con-
tract with Java source code. We evaluated the functionality
in a small desktop example. The evaluation shows that the
meta model and source code structures are suitable to model

Protocol Contracts. The work presented here is in an early
stadium and is thus not evaluated thoroughly yet.

Acknowledgements
The work presented in this paper is partially funded by the
DFG (German Research Foundation) under the grant num-
ber GO 774/7-1 within the Priority Programme SPP1593:
Design For Future – Managed Software Evolution.

10. REFERENCES
[1] M. Balz. Embedding Model Specifications in

Object-Oriented Program Code: A Bottom-up
Approach for Model-based Software Development. PhD
thesis, Universität Duisburg-Essen, Mai 2011.

[2] G. Blair, N. Bencomo, and R. France. Models@
run.time. Computer, 42(10):22–27, Oct 2009.

[3] A. Brown, J. Conallen, and D. Tropeano.
Introduction: Models, Modeling, and Model-Driven
Architecture (MDA) Model-Driven Software
Development. In S. Beydeda, M. Book, and V. Gruhn,
editors, Model-Driven Software Development,
chapter 1. Springer, Berlin/Heidelberg, 2005.

[4] C. A. R. Hoare. Communicating sequential processes,
volume 178. Prentice-hall Englewood Cliffs, 1985.
http://www.usingcsp.com/.

[5] M. Konersmann and M. Goedicke. A Conceptual
Framework and Experimental Workbench for
Architectures. In M. Heisel, editor, Software Service
and Application Engineering, volume 7365 of Lecture
Notes in Computer Science, pages 36–52. Springer
Berlin Heidelberg, 2012.

[6] A. T. McNeile and E. E. Roubtsova. Programming in
Protocols - A Paradigm of Behavioral Programming.
In C. Gonzalez-Perez and S. Jablonski, editors,
ENASE, pages 23–30. INSTICC Press, 2008.

[7] A. T. McNeile and N. Simons. Protocol modelling: A
modelling approach that supports reusable
behavioural abstractions. Software and System
Modeling, 5(1):91–107, 2006.

[8] U. A. Nickel, J. Niere, J. P. Wadsack, and A. Zündorf.
Roundtrip Engineering with FUJABA. In Proc of 2nd
Workshop on Software-Reengineering (WSR), Bad
Honnef, Germany, 2000.

[9] OMG. OMG Unified Modeling Language (OMG
UML), Superstructure, Version 2.4.1, August.

[10] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven
Software Development: Technology, Engineering,
Management. John Wiley & Sons, 2006.

[11] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition, 2009.


