
Towards Architecture-Centric Evolution of Long-Living
Systems (The ADVERT Approach)

Marco Konersmann*, Zoya Durdik**, Michael Goedicke*, Ralf H. Reussner**

*{marco.konersmann,michael.goedicke}@paluno.uni-due.de **{zoya.durdik,reussner}@kit.edu
paluno - The Ruhr Institute for Software Technology Karlsruhe Institute of Technology (KIT)

University of Duisburg-Essen Karlsruhe, Germany
Essen, Germany

ABSTRACT
Although an intensive research attention has been paid to
software evolution, there is no established approach which
supports a software development and evolution round-trip
between requirements, design decisions, architectural ele-
ments, and code. The ADVERT approach shall provide
support for software evolution on an architectural level. AD-
VERT is based on two core ideas: (1) Maintaining trace links
between requirements, design decisions, and architecture el-
ements, and (2) explicitly integrating software architecture
information into the code. The expected benefits of the
approach are: (1) Eased understanding of the relationship
between requirements and design, and (2) assured compli-
ance between architectural design and implementation. In
this position paper we explain our envisioned approach and
demonstrate it on a CoCoME-based example, which is a
benchmark for component-based modelling approaches.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords
Software architecture, Software evolution, Design decisions,
Embedded architecture

1. INTRODUCTION
Software systems are naturally change-prone and evolve

over time. The changes are caused by internal factors, such
as bugs or performance profiling, and by external factors,
such as new requirements or changing technology. Imple-
mentation of changes typically affects multiple artefacts, such
as system specifications, architectural models, and code.
However, the changes are often unsystematic and bypass one
or several of the artefacts, in particular system documenta-
tion and architectural models. Thus, the artefacts become

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

out of synch, system design drifts over time and system evo-
lution becomes expensive and time-consuming. Especially
long-living systems (systems with the life span over 10 years)
are affected by these problems due to evolution.

What are the reasons for these problems? One of the rea-
sons is that software evolution is neglected during the sys-
tem design, as we have discovered in our previous work [3].
The neglecting is caused by time and budget pressure, and
also by the fact that the consequences for the evolution are
actually not always clear to the developers.

Another reason is the system complexity. Designing soft-
ware architecture includes numerous design decisions trig-
gered by requirements as well as technical and management
constraints. These decisions are often taken by different
persons and under various conditions. Therefore, documen-
tation of decisions together with the rationale is of special
importance for system evolution. However, documentation
of decisions with rationale and trace links to the require-
ments is a manual process. It is cumbersome, error-prone
and time-consuming.

A third reason are the at least two representations of archi-
tecture: the architecture specification and the implementa-
tion, whereby some parts of the architecture information are
only visible in one of the representations. These two repre-
sentations have to be synchronised to avoid misinformation.
Often the documentation and architectural models are out
of date or are simply missing, and the code is the only re-
maining documentation of the system design.

A significant research effort has been directed to the prob-
lem of software evolution [16], however, we could not dis-
cover any mature industry-applied approach to support the
development and evolution of long-living systems [3].

In this position paper we explain our envisioned architec-
ture–centric approach ADVERT to support system devel-
opment and evolution round-trip between requirements, de-
sign decisions, architectural elements, and code. We demon-
strate the approach on a CoCoME-based example, which is a
benchmark for component-based modelling approaches [10].
The ADVERT approach shall provide support to evolution
of long-living systems on an architectural level. It is based
on two core ideas: The maintenance of trace links between
requirements and architectural elements through design de-
cisions, and the integration of software architecture informa-
tion with the code. The expected benefits of the approach
are: (1) To explicitly show the consequences of design de-
cisions for the evolvability of the system by annotating the
solutions with information for the evaluation of their appli-



Lorem ipsum

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Sed nec ante eu neque malesuada
ornare. Pellentesque habitant morbi tristique
senectus et netus et malesuada fames ac turpis
egestas. Morbi enim risus, hendrerit at bibendum
id, pellentesque at augue. Ut sem nulla, dignissim
at ultrices eget, pulvinar eget libero. Nullam id est
a velit mollis venenatis eget eget magna. Aliquam
vehicula, augue ac lobortis mattis, dui magna
tristique eros, ut condimentum urna purus eget
risus. Suspendisse potenti. Phasellus placerat
erat sit amet arcu laoreet mollis. Sed elit leo,
imperdiet in aliquet in, cursus quis sapien. Proin
ultrices, elit eu lacinia vehicula, nulla libero
malesuada enim, non viverra leo mauris a tellus.
Mauris vitae libero id mauris vestibulum
venenatis. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubilia
Curae; Suspendisse posuere imperdiet diam at
iaculis. Cras elementum faucibus felis, non
volutpat libero pretium semper.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Sed nec ante eu neque malesuada
ornare. Pellentesque habitant morbi tristique
senectus et netus et malesuada fames ac turpis
egestas. Morbi enim risus, hendrerit at bibendum
id, pellentesque at augue. Ut sem nulla, dignissim
at ultrices eget, pulvinar eget libero. Nullam id est
a velit mollis venenatis eget eget magna. Aliquam
vehicula, augue ac lobortis mattis, dui magna
tristique eros, ut condimentum urna purus eget
risus. Suspendisse potenti. Phasellus placerat
erat sit amet arcu laoreet mollis. Sed elit leo,
imperdiet in aliquet in, cursus quis sapien. Proin
ultrices, elit eu lacinia vehicula, nulla libero
malesuada enim, non viverra leo mauris a tellus.
Mauris vitae libero id mauris vestibulum
venenatis. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubilia
Curae; Suspendisse posuere imperdiet diam at
iaculis. Cras elementum faucibus felis, non
volutpat libero pretium semper.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Sed nec ante eu neque malesuada
ornare. Pellentesque habitant morbi tristique
senectus et netus et malesuada fames ac turpis
egestas. Morbi enim risus, hendrerit at bibendum
id, pellentesque at augue. Ut sem nulla, dignissim
at ultrices eget, pulvinar eget libero. Nullam id est
a velit mollis venenatis eget eget magna. Aliquam
vehicula, augue ac lobortis mattis, dui magna
tristique eros, ut condimentum urna purus eget
risus. Suspendisse potenti. Phasellus placerat
erat sit amet arcu laoreet mollis. Sed elit leo,
imperdiet in aliquet in, cursus quis sapien. Proin
ultrices, elit eu lacinia vehicula, nulla libero
malesuada enim, non viverra leo mauris a tellus.
Mauris vitae libero id mauris vestibulum
venenatis. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubilia
Curae; Suspendisse posuere imperdiet diam at
iaculis. Cras elementum faucibus felis, non
volutpat libero pretium semper.

?!

Functional and 
Quality Requirements

Design 
Decisions

Architecture Implementation

public void requestActivation() {
super.requestActivation();
setCurrentViewerPane(this);

selectionViewer = 
(TreeViewer)viewerPane.getViewer();
selectionViewer.setContentProvider(new 
AdapterFactoryContentProvider(adapterFactor
y));

new 
AdapterFactoryTreeEditor(selectionViewer.getT
ree(), adapterFactory);

createContextMenuFor(selectionViewer);
int pageIndex = 
addPage(viewerPane.getControl());
}

public void requestActivation() {
super.requestActivation();
setCurrentViewerPane(this);
selectionViewer.setInput(editingDomain.getResour
ceSet());

selectionViewer.setSelection(new 
StructuredSelection(editingDomain.getResourc
eSet().getResources().get(0)), true);
viewerPane.setTitle(editingDomain.getResourceS
et());

selectionViewer = ( ();
selectionAdapterr(adapterFactory));

createContextMenuFor(selectionViewer);
int pageIndex = 
addPage(viewerPane.getControl());
setPageText(pageIndex, 
getString("_UI_SelectionPage_label"));

}

C o n s i s t e n c y

A
lte

rn
a

tiv
e

s

Figure 1: Approach overview

cability, (2) to make complex systems easier to manage by
giving support in documenting design decisions and gener-
ating and maintaining trace links, and (3) to avoid misinfor-
mation from outdated architecture artefacts by eliminating
redundant architecture representations.

In section 2 we explain the envisioned approach and pro-
vide an example of its use. In section 3 we discuss related
work. Section 4 concludes the paper and draws future work.

2. ARCHITECTURE-CENTRIC EVOLUTION
OF LONG-LIVING SYSTEMS

In this position paper we present an approach for archi-
tecture–centric evolution of long–living systems. The goal
of this approach is to support the evolution of systems by
tightly integrating requirements engineering, architecture de-
sign, and implementation. To achieve this goal, we sup-
port the consistency between functional and quality require-
ments, design decisions, architecture specification, and archi-
tecture implementation, and provide support to systemati-
cally evaluate architecture alternatives (cf. figure 1).

Within this approach we extend and seamlessly combine
two methods that we have formerly presented separately.
The combination is shown in figure 2. Part (a) of figure 2
outlines the core concepts of the first method for document-
ing design decisions and maintaining trace links between re-
quirements, design decisions and architecture. This method
is the extension of [4]. It uses existing architecture specifi-
cations in an architecture description language (ADL). The
results of this method are changes to these architecture spec-
ifications and decisions documented together with rationale.

Part (b) of figure 2 outlines the core concepts of the sec-
ond method. This is a method for explicitly integrating
architecture with program code, and eliminating redundant
architecture representations [12]. The second method uses
architecture specifications in an ADL, and integrates this
information explicitly into program code. The result of this
method is executable source code that implies the architec-
ture specification. When the architecture is changed in the
code, these changes are reflected in the architecture specifi-
cation. Therefore the architecture specification in an ADL
is the interface that easily allows to combine the methods to
form an architecture-centric approach to evolution in long-
living systems (ADVERT).

In the following, we present the use of the envisioned com-
bined approach within an exemplary evolution scenario. We
first outline the scenario. Then we explain the combined
methods, before we demonstrate the application of the com-
bined methods in the exemplary scenario.

2.1 Exemplary Evolution Scenario
The evolution scenario is divided into seven steps: In step

(1) change requests arrive that are relevant to the archi-
tecture. Prior requirements are invalidated or new require-
ments are added to the system due to these changes. In step
(2) prior decisions affected by the requirements change are
re-evaluated or new design decisions are taken. These de-
cisions can be identified via predefined trace links from the
requirements. In this step affected or new architectural ele-
ments are identified by following trace links from changed or
new design decisions. In step (3) the architecture (expressed
in an ADL) is adapted with respect to the changed and new
design decisions. In step (4) the changes in the architec-
ture are automatically transferred to the code via an inter-
mediate architecture language. In this process architecture
information is explicitly integrated with the program code
so that it can be extracted easily. In step (5) the code is
completed by programmers to reflect the detailed behaviour
of the software on a non-architectural level. In step (6) the
architecture description is extracted from the code via the
formerly mentioned intermediate language. In step (7) the
architecture is compared to the intended architecture and
validated by architects.

To use our approach in this evolution scenario, it is re-
quired that the system has formerly been developed using
that approach. The initial development of the system is to
be made in a scenario like above. Such a scenario would,
however, only create new requirements in the first step.

In the following sections we provide an explanation of the
ADVERT approach. The explanation is divided into two
parts. The first part deals with the steps 1 to 3. It covers
the evolution from change requests to revised design deci-
sions and their effect on the architecture specification. The
second part deals with the steps 4 to 7 and covers the ex-
plicit integration of the changed architecture specification
with program code. In the last section we demonstrate our
approach on a real-life-based example following the scenario
outlined above.

Design 
Decisions 

Hypotheses 
(Checklists) 

Design 
Solutions 

Architecture  
in ADL 

Architecture  
in Intermediate Language 

Architecture  
in Component Model 

Code 

Requirements, Decisions and Architecture 

Architecture and Code 

based on connected to 

used to build 

transformed into 
integrated in 

integrated in transformed into 
contains explicitly 

contains explicitly 

(a) 

(b) 

traces 

traces 

Figure 2: (a) outlines the core concepts for docu-
menting design decisions and maintaining trace links
between requirements, design decisions, and archi-
tecture artefacts. (b) outlines the core concepts
for explicitly integrating architecture with program
code, and eliminating redundant architecture. The
architecture in an ADL is the combining element.

2.2 Linked decisions and architecture
The core idea of this part of the ADVERT approach is to

distinguish between two types of design solutions, custom
and recurring design solutions, such as design patterns, com-
ponents and web services. The idea is based on our earlier
proposed catalogue of design patterns [4, 5], which we extend



for ADVERT to support web services and components. The
descriptions of recurring design solutions in the catalogue
are stored together with solution-specific questions. These
questions serve as checklists to validate the applicability of
the selected solution in the problem context. An example
of questions to a catalogue solution “Facade pattern” is pro-
vided on figure 3. Answered questions are rationale for the
decision to select or to withdraw the solution. Please re-
fer to our previous work for more information on catalogue
questions and answers to them [4, 5].

Once change requests arrive, engineers select a potential
solution (step 1 on figure 3) to satisfy new or changes re-
quirements using a state-of-the-art approach for a solution
selection (see section 3). If the selected solution is a reusable
solution, software engineers answer the questions from the
catalogue to evaluate the applicability of the solution for
the specific problem (step 2a on figure 3). Answers to the
questions from the catalogue are automatically saved as a
rationale together with decisions to take or to withdraw the
solution (step 2b on figure 3). Based on the rationale, po-
tentially affected design decisions can be easier verified by
software engineers for their validity. The new or modified
requirements are automatically linked to the decision as its
triggers.

QID Questions for Facade Pattern Answer
Q042 Would you like to provide a unified interface to a set of 

interfaces in a subsystem?
Yes

Q043 Would you like to minimize the communication and 
dependencies between subsystems?

Yes

Q045 An additional functionality wrapped into the unified 
interface is not your intent? (otherwise  Proxy)

Yes

Q046 Is a potential performance bottleneck not an issue? 
Q047 … …

Architectural models

Decision, Rationale 
and Trace Links

Pattern 
Catalogue 1

2a

Lorem ipsum
Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Sed nec ante eu neque
malesuada ornare.
Pellentesque habitant morbi
tristique senectus et netus et
malesuada fames ac turpis
egestas. Morbi enim risus,
hendrerit at bibendum id,
pellentesque at augue. Ut sem
nulla, dignissim at ultrices

RequirementsSolution Documentation

2b 3

Figure 3: An example catalogue entry: Facade pat-
tern questions with answers

If a new decision is met based on new or changed require-
ments or an invalid decision is encountered, an engineer up-
dates the architecture specification (step 3 on figure 3). The
decision is semi-automatically linked to the new or changes
architectural elements. Thus, new or updated decisions are
saved together with links to architectural elements and re-
quirements and a rational (in form of answers to the ques-
tions) provided by an engineer. The architecture specifica-
tion is the input for the next step of the approach.

As custom design solutions can not be anticipated, they
can not be captured and provided with checklists in a cat-
alogue in advance. Thus, we cannot ease the documenta-
tion of such decisions with the solution catalogue. For these
cases other approaches have to be used, such as problem
frames [11] to come to a solution, and trace meta-models [6]
to link artefacts. While the creation of trace links and cap-
ture of the decision rationale can not be fully automated, we
hope to lower the burden of documentation with the help of
pre-annotated design solutions.

The results of this part of the ADVERT approach are:
Evaluated and semi-automatically documented design deci-
sions, rationale for the decisions, and trace links connecting
design decisions to the triggering requirements and to the
implementing architectural elements.

2.3 Explicitly Integrated Architecture
In software architecture, usually at least two representa-

tions of the architecture exist: The architecture is explic-
itly documented in a specification and mostly implicitly en-
coded in the implementation. A specification is expressed in
an ADL such as UML. In business information systems the
architecture implementation often follows the structure of
component models (CM). Both representations of the archi-
tecture, expressed in ADLs and CMs, are necessary to fully
represent the system architecture. These two representa-
tions have to be synchronised to avoid misinformation, be-
cause they share information. The goal of the Explicitly In-
tegrated Architecture approach (presented formerly in [12])
is to avoid differences between these representations. To
achieve this goal, the specification is explicitly integrated
into the program code in such a way that it complies a CM,
and at the same time includes the additional information
from the architecture specification (e.g. cf. [15]). Therefore
only one representation remains.

ADL Intermediate
Language CM

Architecture Code Patterns
Conceptual Interfaces

Arbitrary Code

M
od

el
 L

ay
er

C
od

e 
La

ye
r

transformation transformation

use

use

integration integration

Figure 4: Overview of the Explicitly Integrated
Architecture Approach

Figure 4 shows the concept of Explicitly Integrated Archi-
tecture. The approach includes two steps: In the step (a)
the architecture is modelled using an ADL and transformed
to match the CM of choice. This introduces to two chal-
lenges: (1) There are several ADLs and several CMs. This
is a n:m relationship which does not scale well. (2) CMs
and ADLs differ in their features and their abstraction level.
CMs typically only define the structure of the system for-
mally, and are highly integrated with the implementation
details. ADLs hide implementation details, but typically in-
clude aspects besides the structure, e.g. behaviour or quality
(cf. [14]). ADLs among each other also differ in their fea-
tures, as do CMs.

To address (1) we introduce an intermediate language (IL)
that reduces the n:m relationship to a n:1:m relationship.
We create bidirectional transformations between ADLs and
the IL, and between the IL and the CMs (e.g. see [12]).
To address (2), the IL and their relationship to ADLs and
CMs have to respect the variability of these languages. Fea-
tures of ADLs and CMs that have a direct equivalent in
another representation can be used in both representations
by defining a model transformation. When no equivalent
exists, a complex transformation should be defined that em-
ulates the missing feature, if possible. If the feature cannot
be emulated, it cannot be used in the first place or has to
be integrated as uninterpreted IL elements. If the feature
is mandatory to be used (e.g. because it is a core concept
of the language), but it cannot be expressed in the second
representation, the representations are incompatible. Thus,
choosing the first representation excludes the latter from be-
ing chosen. To consider this aspect, the meta model of the
intermediate language is modular (cf. [12]).



There is information in ADLs that cannot be expressed
in certain CMs, and can also not be emulated by complex
transformations as described earlier. This is typically be-
haviour and quality, but arbitrary other information is imag-
inable. Behaviour information can be integrated as inte-
grated behavioural model, as has already been shown with
process models and automata [1]. Quality and other infor-
mation may need to be integrated as uninterpreted data.

The step (b) is to create source code that is structured
so that it represents the model elements as denoted in the
CM view. This is what we call integrated CM. We want to
create a bidirectional mapping between code patterns1 and
CM elements. A simple example is an Enterprise JavaBeans
(EJB – a widely used component framework for enterprise
systems) singleton bean, which maps to a Java class with
the annotation @Singleton. The name of the bean is the
name of the class. The interpretation of this information
at run time is subject to the execution environment. Other
mappings, especially for behavioural specifications can be
more complex.

Our approach does not aim to replace the complete imple-
mentation phase, but to replace the coding of architecturally
relevant code. The detailed behaviour of atomic components
has still to be implemented by hand or other approaches.
The code patterns generated by our approach use concep-
tual interfaces to interact with such arbitrary other code.
These are not necessarily technical interfaces. In the exam-
ple of the singleton bean in EJB the conceptual interface for
arbitrary code that defines the bean’s behaviour is the loca-
tion of the code within the class that represents the bean.

In step (a) bidirectional transformations were defined be-
tween ADLs and CMs via an IL. In step (b) the information
of the CM has been explicitly integrated into the program
code, so that it can be unambiguously extracted from the
code. Following this approach, a software architecture im-
plementation is generated that corresponds to the architec-
ture modelled in an ADL. Also the code can be parsed and
the underlying ADL model can be shown. Therefore this
part implements the steps (4) and (6) of our evolution sce-
nario in section 2.1.

Using this approach allows to extract the actual architec-
ture from the code. It requires discipline from the developers
to not break the integrated architecture. Arbitrary archi-
tectural changes can be made in the source code. When the
changes follow the defined code patterns, such changes can
be viewed when extracting the architecture. However de-
velopers can always break the architecture invisible to our
approach, e.g. by using communication channels not con-
sidered by the integration approach.

When an integrated architecture is changed in an evo-
lutionary manner, the underlying code base is adapted to
reflect the changes. The conceptual interfaces have to be
respected during the adaptation, for the other code to work
properly. It cannot be guaranteed that the code describing
the detailed behaviour is still working as expected. There-
fore tests will be necessary.

2.4 Demonstration on example
We demonstrate our approach with the exemplary sce-

1We do not mean patters in terms of the GoF [7], but tem-
plates of structural elements and instructions within the
source code. E.g. a class with an annotation that indicates
a state definition.

nario shown in section 2.1 using Common Component Mod-
eling Example (CoCoME) [10]. CoCoME is an example sys-
tem with the original goal to define a benchmark for compo-
nent models. It consists of cash desks with terminals to buy
items, store servers to manage the stock of a single store,
enterprise servers to manage the stock of several stores, and
the respective clients to use the servers. Imagine that the
Hexxon petrol station group has a CoCoME installation to
sell and manage items in their petrol stations. Hexxon Co-
CoME was designed and documented using the ADVERT
approach. Design decisions are documented together with
rationale and trace links to requirements and architectu-
ral elements. There is an explicitly integrated architecture
available. For this scenario we have adopted the architec-
ture of the CoCoME enterprise server, which is provided on
figure 5 together with a high-level view of CoCoME.

Load Balancer

Load 
Balancer

Store Client
Removed 
Elements

Added 
Elements

Store Server

Cash Desk

Enterprise Client

Enterprise Server

Inventory 
Management

Reporting

Authentication
Data 
AccessProxy

Cache

DB

Facade

Application

Application

Existing 
Elements

Database

Figure 5: Hexxon-Nobil CoCoMe architecture with
required changes

In our scenario, the Hexxon and Nobil petrol station groups
merge. Hexxon-Nobil wants to use CoCoME installations in
all of their stores.

Linked decisions and architecture
In step (1) of our evolution scenario, the following changes

are requested: (C1) Due to the expanded installation the
system needs to support 1400 petrol stations instead of 700.
The enterprise servers cannot handle this load, as identified
by a performance analysis. (C2) As the system has to be
changed, the company also plans to upgrade the underlying
technological platform from Enterprise Java Beans (EJB)
2.1 to EJB 3.1.

In step (2), software engineers identify the possible solu-
tions to meet the changes: C1 involves (see figure 5): new
component “Load Balancer”, replication and deployment on
additional hardware knots, and evtl. reconfiguration of Hi-
bernate. C2 involves several code changes for the newer
EJB standard uses a new programming style than the old
standard. The architecture itself remains the same.

C1 involved implementation of a new component “Load
Balancer”. This component shall be connected before the
“Facade” component and deployed on a dedicated server.
As a “Facade” component might be a potential bottleneck,
software engineers want to re-evaluate the decision to use a
Facade. They check the rationale saved for the decision —
answers to the questions from the solution catalogue (fig-
ure 3). They discover question number Q045 “An additional
functionality wrapped into the unified interface is not your
intent? (otherwise use Proxy)” answered as “Yes”. This is a
contradiction, as the application components will be repli-
cated and the Facade component would need to manage the
sessions. Software engineers refer to the solution catalogue



to evaluate the recommended Proxy pattern and answer the
provided questions. In particular, the question Q035“Would
you like to provide an interface with some additional func-
tionality, e.g. management of objects, etc.?” is conform with
the new requirements. A decision to replace Facade pattern
component with the Proxy pattern component is taken.

Thus, C1 involves not only new component “Load Bal-
ancer”, replication and deployment on additional hardware
knots, and evtl. reconfiguration of Hibernate, but also re-
placement of Facade component with the Proxy one (see
figure 5) . In step (3) engineers update the architectu-
ral specification in the ADL. They revise requirements con-
nected to the Facade decision. The requirements and the
involved architectural elements are discovered with the help
of the saved trace links. In the background, the new links
between C1, changes to requirements, decisions and archi-
tectural elements are captured.

There is a second way to discover that the Facade de-
sign decision is deprecated. Software engineers could have
started analysing the requirements to the system. They
would have discovered the requirement R023, which was
one of the contributing requirements to the Facade deci-
sion. This requirement is outdated due to the C1. Software
engineers are suggested a list of design decisions, where the
deprecated requirement triggered the decision. The decision
to use the Facade pattern is re-evaluated as described above

Explicitly Integrated Architecture
The system architecture is implemented using EJB 2.1.

Here we assume that the code has already been developed
using our approach. Therefore the actual architecture can
be extracted and viewed in an UML architectural represen-
tation. The ADL view used in step (3) was already an ex-
tracted, integrated architecture. The source code was parsed
and the EJB 2.1 CM representation was extracted. This
representation was transformed into a model of the IL meta
model, which was in turn transformed into a model conform-
ing the UML meta model.

In step (4) the ADL representation is integrated into
the code. C1 includes a new component “Load Balancer”,
which is modelled as a basic component in UML. One single
instance is allocated to a deployment container. The trans-
formation into the EJB 2.1 results in a new singleton bean.
Architectural code for this bean can be generated, includ-
ing an interface and method skeletons. C1 also implies a
replacement of the “Facade” with a “Proxy”. The old facade
bean is deleted while a new proxy bean is created with new
connections. These changes are made analogously to the
new Load Balancer component.

In step (5) the detailed behaviour of the load balancer
needs to be implemented by a coder in this example.

The replication modelled in UML for C1 results in the
deployment of copies of the application package on multi-
ple nodes. There is no deployment information in the EJB
2.1 component model. The information about the replica-
tion can be attached to the replicated component using an
annotation, so that this information is available when the
architecture is extracted. But the replicated deployment
has to be done manually, therefore this is also executed in
step (5). Deployment information could e.g. be managed by
a deployment infrastructure, but the EJB specification does
not specify such an infrastructure.

C2 implies a change from the EJB 2.1 CM to EJB 3.1.
The newer specification includes a new programming style,

relying more on annotations for defining components and
connections than EJB 2.1, which is configured mainly us-
ing XML descriptor files. For changing from the old to the
new programming model, the meta models for EJB 2.1 and
EJB 3.1 are necessary, as well as transformations between
the IL meta model and both EJB versions. The architecture
needs to be extracted from the old code, and the transfor-
mation target needs to be set to EJB 3.1. The architecture
is the completely changed to EJB 3.1. The non-architectural
code might not work as expected, where it relies on the old
specification, but when the conceptual interfaces between
the architectural code patterns and arbitrary other code is
respected, no more work is necessary.

In step (6) of the scenario, the new actual architecture
is extracted from the code. The information is transformed
into CM and IL representations, which are in turn trans-
formed into an ADL representation. In step (7) the archi-
tecture is reviewed by an architect. In this demonstration
the manual changes did not change the architecture and can
therefore be confirmed.

3. RELATED WORK
We have investigated the evolution of long-living systems

in our previous work [16, 3], and have proposed guidelines to
be considered during systems’ life-cycles to reduce the evo-
lution problems [3]. These guidelines contain well-approved
software engineering methods and tools, and are not a uni-
form approach to accompany systems’ design and evolution.

In this position paper we propose a uniform approach to
tightly integrate architecture design, implementation, and
requirements to ease evolution of long-living systems. The
approach extends and combines our previous work [4, 12]
and consists of (1) an architecture language supporting evo-
lution, (2) a catalogue of reusable solutions with question
annotations to evaluate the solutions, (3) a method to doc-
uments decisions together with rationale and to establish
trace links between artefacts, and (4) explicitly integrated
architecture. We structure the related work according to
these four aspects. Due to space reasons we provide only a
few related work approaches per aspect.

ADLs have been subject to research for decades, but they
are often focused on specific domains, are typically not inter-
changeable, and do not consider longevity and future evolu-
tion [3]. Until now we found no ADL that explicitly supports
evolution. In [9] a tool building upon an ADL is presented
that introduces evolution paths as first class entities. We
plan to support such concepts with our approach.

The idea to structure the information in catalogues is not
new. Some examples are books such as Gamma et al. [7] and
other catalogues e.g. by Tichy [19]. In addition, some ap-
proaches also support the selection of the solutions from the
catalogue. Wang et al. [20] propose an approach to guide the
selection of solutions based on quality properties. Garbe et
al. [8] propose KARaCAs approach, which is an expert sys-
tem based on the Bayesian Belief Network and where ques-
tions are used to select the most appropriate pattern. These
approaches are complimentary to our approach. The unique
feature of our approach is the inclusion of question anno-
tations to evaluate the solutions and to semi-automatically
capture the rationale for decisions to select a solution.

In order to capture design decisions and rationale meta-
models have been proposed e.g., by Kruchten [13] or Tang et
al. [18]. A survey by Galvao et al. [6] discusses and evaluates



the state-of-the-art in traceability approaches according to
the traceability representation, mapping, scalability, change
impact analysis, and tool support. Although traceability is
widely researched in academia [6], the results the have not
yet reached the maturity to be applied in industrial con-
text [2]. Furthermore, additional research is needed to de-
velop methods and tool support for rationale capturing and
usage, as to Tang et al. [17]. The major problem here is the
high overhead, which can be reduced with the pre-annotated
reusable solutions proposed in our approach.

Explicitly Integrated Architecture is based on the idea in
[1]. However, Balz considers mainly behavioural models.
Architecture models contain multiple view points that must
be synchronised. Balz arguments in [1] why no directly com-
peting work exists.

4. CONCLUSION AND FUTURE WORK
In this paper we presented our approach for software evo-

lution on an architectural level. We provide trace links be-
tween requirements, design decisions, and architecture ele-
ments. Our architecture is embedded into the source code.
The trace links and the integration combined provide the
means to achieve the goal of the overall approach: support-
ing the evolution of long-living systems, by making the de-
cision process transparent and the architecture manageable.

Some parts of the approach described in this paper have
already been implemented, e.g. meta models for the design
decision process and the traces have been developed, and an
initial prototype for model transformations between ADLs
and Component Models exists. In short term future work
we will extend these activities to fully implement the ap-
proach. In future work we plan to develop an integrated
tool chain that consistently supports the overall approach,
including guidelines for the user. Additionally, we plan to
extend the approach to include reverse engineering: We plan
to derive ADVERT models from existing code and adapt the
existing code to match the code structures necessary for our
approach. For validation we plan to experimentally use our
approach with evolution scenarios for CoCoME.

Our approach creates additional effort during system de-
velopment, as existing artefacts (e.g., architectural models)
have to be extended and additional artefacts need to be cre-
ated (e.g., trace link and intermediate models). However,
we believe that this effort would pay off during system evo-
lution of the long-living systems, which are target of our
approach. We plan to conduct an empirical validation of
this hypothesis and to define applicable metrics.

Acknowledgement
This work was partially supported by the DFG (German Re-
search Foundation) under the Priority Programme SPP1593:
Design For Future – Managed Software Evolution.

5. REFERENCES
[1] M. Balz. Embedding Model Specifications in

Object-Oriented Program Code: A Bottom-up
Approach for Model-based Software Development. PhD
thesis, Universität Duisburg-Essen, 2011.

[2] B. H. C. Cheng and J. M. Atlee. Research directions
in requirements engineering. In Future of Software
Eng. (FOSE), 2007.

[3] Z. Durdik, B. Klatt, H. Koziolek, K. Krogmann,
J. Stammel, and R. Weiss. Sustainability guidelines

for long-living software systems. In Int. Conf. on
Softw. Maintenance (ICSM), 2012.

[4] Z. Durdik and R. Reussner. Position Paper: Approach
for Architectural Design and Modelling with
Documented Design Decisions (ADMD3). In Int.
Conf. on the Quality of Softw. Archi (QoSA), 2012.

[5] Z. Durdik and R. Reussner. On the Appropriate
Rationale for Using Design Patterns and Pattern
Documentation. In Int. Conf. on the Quality of Softw.
Arch. (QoSA), 2013.

[6] I. Galvao and A. Goknil. Survey of traceability
approaches in Model-Driven Engineering. In Int. Ent.
Distributed Object Comp. Conf. (EDOC), 2007.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley, 1995.

[8] H. Garbe, C. Janssen, C. Moebus, H. Seebold, and
H. de Vries. KARaCAs: Knowledge Acquisition with
Repertory Grids and Formal Concept Analysis for
Dialog System Construction. In Managing Knowledge
in a World of Networks. Springer, 2006.

[9] D. Garlan and B. R. Schmerl. Ævol: A tool for
defining and planning architecture evolution. In Int.
Conf. on Soft. Eng. (ICSE), 2009.

[10] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch,
R. Reussner, K. Krogmann, H. Koziolek,
R. Mirandola, B. Hummel, M. Meisinger, and
C. Pfaller. The Common Component Modeling
Example, volume 5153 of LNCS, chapter CoCoME.
Springer, 2008.

[11] M. Jackson. Problem Frames: Analysing &
Structuring Software Development Problems.
Addison-Wesley Professional, 2000.

[12] M. Konersmann and M. Goedicke. A Conceptual
Framework and Experimental Workbench for
Architectures. In Softw. Service and Appl Eng.,
volume 7365 of LNCS. Springer, 2012.

[13] P. Kruchten. An Ontology of Architectural Design
Decisions in Software Intensive Systems. In 2nd
Groningen W. Software Variability, 2004.

[14] M. Müller, M. Balz, and M. Goedicke. Representing
Formal Component Models in OSGi. In S. Eng., 2010.

[15] M. Müller, M. Balz, and M. Goedicke. Enriching Java
Enterprise Interfaces with Formal Sequential
Contracts. In 3rd W. on Behavioural Modelling, 2011.

[16] J. Stammel, Z. Durdik, K. Krogmann, R. Weiss, and
H. Koziolek. Software Evolution for Industrial
Automation Systems: Literature Overview. Karlsruhe
Reports in Informatics, 2011.

[17] A. Tang, M. Babar, I. Gorton, and J. Han. A survey
of the use and documentation of architecture design
rationale. In Conf. on Softw. Arch. (WICSA), 2005.

[18] A. Tang, Y. Jin, and J. Han. A rationale-based
architecture model for design traceability and
reasoning. J. Syst. Softw., 80, 2007.

[19] W. F. Tichy. A catalogue of general-purpose software
design patterns. In Tools-23, 1997.

[20] W. Wang and J. E. Burge. Using rationale to support
pattern-based architectural design. In ICSE W. on
Sharing and Reusing Arch. Knowl., SHARK, 2010.


