
Rapid Continuous Software Engineering –
State of the Practice and Open Research Questions

Report on the 6th International Workshop on
Rapid Continuous Software Engineering (RCoSE 2020)

Marco Konersmann¹, Brian Fitzgerald², Michael Goedicke³, Helena Holmström Olsson , Jan Bosch , Stephan Krusche⁴ ⁵ ⁶

¹University of Koblenz-Landau, Germany, konersmann@uni-koblenz.de
²Lero, University of Limerick, Ireland, brian.fitzgeralt@ul.ie

³University of Duisburg-Essen, Germany, michael.goedicke@paluno.uni-due.de
⁴Malmö University, Sweden, helena.holmstrom.olsson@mau.se

⁵Chalmers | University Gothenburg, Sweden, jan.bosch@chalmers.se
⁶Technische Universität München, Germany, krusche@in.tum.de

ABSTRACT
We need to built software rapidly and with a high quality. These

goals seem to be contradictory, but actually, implementing automation
in build and deployment procedures as well as quality analysis can
improve both the development pace and the resulting quality at the
same time. Rapid Continuous Software Engineering describes novel
software engineering approaches that focus on short release cycles,
continuous deployment, delivery, and continuous improvement through
rapid tool-assisted feedback to developers. To realize these approaches
there is a need for research and innovation with respect to automation
and tooling, and furthermore for research into the organizational
changes that support high pace development. This paper reports on the
results of the 6th International Workshop on Rapid Continuous
Software Engineering (RCoSE 2020), which focuses on the challenges
and potential solutions in the area of Rapid Continuous Software
Engineering, before reporting on our discussions regarding the state of
the practice and open research topics.

Keywords
rapid software engineering, continuous software engineering

1. INTRODUCTION
Systems we build are ultimately evaluated based on the value they
deliver to their users and stakeholders. To increase the value, systems
are subject to fast-paced evolution of the systems, due to unpredictable
markets, complex and changing customer requirements, pressures of
shorter time-to-market, and rapidly advancing information technologies.
To address this situation, agile practices advocate flexibility, efficiency
and speed. Rapid continuous software engineering refers to the
organizational capability to develop, release and learn from software in
rapid parallel cycles, typically hours, days or very small numbers of
weeks. This includes to determine new functionality to build, evolving
and refactoring the architecture, developing the functionality, validating
it, and releasing it to customers, and collecting experimental feedback
from the customers to inform the next cycle of development. One needs
to relate the changes performed on the system with their effect on the
metrics of interest, keep the changes with positive effects, and discard
the rest. This requires not only agile processes in teams but in the
complete research and development organization. Additionally, the
technology used in the different development phases, like requirements
engineering and system integration, must support the quick
development cycles.

The capability to perform all these activities in days or a few weeks
requires significant changes in the entire software engineering
approach, including parallelising activities, empowering cross

functional teams to allow for rapid decision making and light weight
coordination across teams. It also requires significant technical
advances in the engineering infrastructure, including continuous
integration and deployment, collection of post-deployment product
usage data, support for running automatic live experiments to evaluate
different system alternatives, e.g., A/B testing.

Reaching this goal requires crosscutting research which spans from the
area of process and organizational aspects in software engineering to
technical aspects in the individual phases of the software engineering
life cycle. Rapidly developing and evolving software systems is
important in control-flow oriented as well as data-centric systems, from
internet services to cyber-physical systems, and many more. Still, the
processes and technology need to respect the differences between these
types of systems.

2. RCoSE WORKSHOP

The workshop RCoSE 2020 took place online on July 1st, 2020
using a video conferencing software due to the Corona pandemic. It was
part of the similarly virtual ICSE 2020 conference. The workshop had
34 registered participants. Videos of the talks were provided online
before the workshop alongside the paper contributions. In the workshop
the authors briefly summarized their contribution to create a common
base before we started an intense discussion phase. This format proved
to be valuable as there was plenty of time for discussion and the other
participants could follow the presentations when it fitted well. After a
keynote we discussed the workshop papers. The workshop had a total of

Figure 1: Snapshot from the keynote at the virtual RCoSE @ ICSE 2020

mailto:konersmann@uni-koblenz.de
mailto:konersmann@uni-koblenz.de
mailto:jan.bosch@chalmers.se
mailto:jan.bosch@chalmers.se
mailto:helena.holmstrom.olsson@mau.se
mailto:helena.holmstrom.olsson@mau.se
mailto:michael.goedicke@paluno.uni-due.de
mailto:michael.goedicke@paluno.uni-due.de
mailto:brian.fitzgeralt@ul.ie
mailto:brian.fitzgeralt@ul.ie
mailto:krusche@in.tum.de

6 submissions of which 3 were accepted. The workshop had an
extensive discussion session in which we discussed the state of the art
of rapid and continuous software engineering in different application
domains and open research topics.

2.1 Keynote
The workshop started with a keynote from Robert Martin of the

BMW Group in Germany, who presented a multi-stage CI system to
speed up the software development in a cross-organizational
environment (see Figure 1). He discussed different formats for
continuous deployment with multiple organizations in multiple stages
and heterogeneous development environments. The goal of the system
is to reduce the software delivery hang time, which is the time for a
commit to get to the product. The CI system is highly automated to test
as much as possible as fast as possible. A key factor is to block errors as
early as possible to save time and resources. Challenges include the
testing in hardware. Also, while ideally a car would run automatically
for hundreds of kilometers for every commit, this is obviously too
expensive. Still, continuous integration at this point opens doors for
continuous improvement.

Introducing a Multi-Stage-CI system technically can be expensive,
based on the cost of the technology to be used, e.g., when using
expensive compilers, that produce costs per build. The organizational
and behavioral changes of the stakeholders highly depend on the
organizational culture: there can be a snowball effect when stakeholders
can see the benefits. Certification is an issue, and that is not integrated
into the pipeline as of today. Certification bodies and producers should
think about continuous certification. While research regarding this point
already exists, this has yet to find its place in practice.

2.2 Workshop Contributions
The industry abstract “Automating Continuous Planning in SAFe”

[1] of Darius Foo, Jonah Dela Cruz, Subashree Sekar, and Asankhaya
Sharma is motivated by quarterly face-to-face PI planning sessions, that
are expensive and difficult to manage. The authors presented how they
replaced the meetings with continuous planning, i.e., the plan is always
refined and always up-to-date. They introduced Sapling, a novel tool for
collaboratively managing and visualizing continuous planning, that
integrates with Jira. The tool can be used to continuously optimize the
work plan of multiple teams regarding hard and soft constraints. The
research prototype has been evaluated with 3 teams concurrently using
the tool.

The industry abstract “Challenges and Benefits from Using
Software Analytics in Softeam” [2] of Alessandra Bagnato, Antonin
Abhervé, Silverio Martínez-Fernández, and Xavier Franch describe the
use of Modelio at Softeam. Modelio is a case study for Q-Rapids. It
collects data of software engineering tools like Jenkins, Mantis,
Sonarqube, etc. for data-analytics with metrics and strategic indicators.
By integrating their processes with the tool Softeam now can do real
time updates of a quality model. The tool centralizes metrics and
strategic indicators in one platform and automates the quality
management process, by automatically triggering alarms and
automatically entering entries into a backlog. It also allows for
simulation of strategic changes and monitoring of the quality
requirement resolution process. The integration into further
organizational processes is still an issue to be resolved.

In the research paper “Platform Teams: The Leading Edge
Organizational Structure for Continuous Delivery” [3] of Leonardo
Alexandre Ferreira Leite, Gustavo Pinto, Fabio Kon, and Paulo
Meirelles use the Grounded Theory approach to build a taxonomy of
organizational structures for continuous SE and evaluate existing
structures for their effectiveness using interviews. They presents
platform teams as well-suited organizational structure and compare
them to collaborating siloed departments, cross-functional teams, and
devops teams regarding their performance. Platform teams are product
teams that have the platform as a product and the developers of other

product teams as internal customers. As a key characteristic of platform
teams the authors identify, that the platform team is an infrastructure
team, that provides highly-automated infrastructure services to
empower product teams.

3. STATE OF THE PRACTICE

Since the advent of the RCoSE workshop in 2014 things have
changed. We noticed that early birds of RCoSE often overstated the
frequency of changes. More realistically, the very frequent changes are
very small changes. More significant changes are less frequent. It might
be a good idea to differentiate between these. Also, while RCoSE is
beneficial in practice, as has been shown in the State of DevOps reports
[4], and many organizations benefit from it once implemented, many
organizations do not benefit because they don’t jump the bar to
implement such a process for their core systems. Currently, no
common, tailorable process exists to show the benefits of RCoSE to
individual organizations.

4. OPEN RESEARCH TOPICS
We discussed we discussed the role of traceability in RCoSE as

important open research topic The participants discussed traceability as
means to trace failures to root causes and tracing releases to
deployments. Tracing business goals to production is important to
answer questions like “How much value does my feature generate?”. In
the latter it was noted that A/B testing seems to be a natural choice for
answering such questions, but while this works well with, e.g., UI
changes, it is not desirable for security design. Traceability as a legal
requirement is commonplace. The participants discussed the potential
and limitations for automating traceability for legal purposes.
Discussing the challenges for traceability in RCoSE, we identified that
the robustness of tools for traceability is often shaky today and that a
holistic traceability would certainly be good, but maintaining traces
does not scale well. We further discussed continuous certification and
traceability for data-driven Software Engineering. Hard questions to
answer are: What should be traced, how much tracing do we need and
how much tracing is too much.

5. CONCLUSIONS

As a summary, we can state that RCoSE is beneficial in SE in
practice. This is often shown in the domain of web-based services, but it
can also be beneficial in other domains like embedded systems.

A main take-away of the workshop is that the key factors for
benefiting from rapid and continuous software engineering seem to be
technology to enable RCoSE and team topologies to operate them. As a
major open research topic we identified traceability, as it is important
for RCoSE in multiple aspects, but hard questions remain unanswered
until now.

6. ACKNOWLEDGMENTS
We would like to thank Robert Martin for his inspiring keynote.

We would like to thank all participants for their contributions in the
forms of papers, talks and discussions in the breakout groups. We
would like to thank the organization team of the ICSE for providing the
frame for our workshop, the ICSE 2020 Workshops Chairs Miryung
Kim and Lori Pollock for helping us hosting our workshop virtually in
the challenging times of the Corona pandemic. Finally, we want to
thank the RCoSE Program Committee comprised of Jan Bosch, Brian
Fitzgerald, Wolfgang Gehringng, Michael Goedicke, Jan Ole Johanßen,
Marco Konersmann, Stephan Krusche, Casper Lassenius, Jürgen
Münch, Helena Holmström Olsson, Karen Smiley, Klaas-Jan Stol,
Matthias Tichy, and Stefan Wagner.

This research was supported by the Science Foundation Ireland
grant 13/RC/2094.

7. REFERENCES
[1] Darius Foo, Jonah Dela Cruz, Subashree Sekar, and Asankhaya

Sharma. 2020. Automating Continuous Planning in SAFe. In
Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops (ICSEW'20). Association for
Computing Machinery, New York, NY, USA, 504.
DOI:10.1145/3387940.3391536

[2] Alessandra Bagnato, Antonin Abhervé, Silverio Martínez-
Fernández, and Xavier Franch. 2020. Challenges and Benefits
from Using Software Analytics in Softeam. In Proceedings of the
IEEE/ACM 42nd International Conference on Software

Engineering Workshops (ICSEW'20). Association for Computing
Machinery, New York, NY, USA, 512.
DOI:10.1145/3387940.3391537

[3] Leonardo Leite, Fabio Kon, Gustavo Pinto, and Paulo Meirelles.
2020. Platform Teams: An Organizational Structure for
Continuous Delivery. In Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops
(ICSEW'20). Association for Computing Machinery, New York,
NY, USA, 505–511. DOI:10.1145/3387940.3391455

[4] N. Forsgren, D. Smith, J. Humble, and J. Frazelle, “2019
AccelerateState of DevOps Report,” Google, Tech. Rep., 2019.
[Online]. Available: https://services.google.com/fh/files/misc/state-
of-devops-2019.pdf

