
A Process for Explicitly Integrated Software Architecture

Marco Konersmann
marco.konersmann@paluno.uni-due.de

paluno, Universität Duisburg-Essen, Germany

Abstract

This paper presents the Explicitly Integrated Archi-
tecture Process for integrating architecture models
with program code. The process allows to edit pro-
gram code using architecture model views with auto-
matic bidirectional translations.

1 Motivation

When long-living software evolves, developers need to
understand the software and the program code struc-
tures that build the software. It is easier to under-
stand abstract models of the code than the code itself.
During the evolution of long-living software, models
tend to become outdated. When such inconsistencies
between the model and the code exist, faults might be
introduced during maintenance and evolution when
developers rely on outdated information.

Our approach to this challenge is to integrate archi-
tecture model specifications into program code. The
models can be embedded into and reliably extracted
from the code. This paper briefly presents the Ex-
plicitly Integrated Architecture Process for integrat-
ing architecture models described in an Architecture
Description Language (ADL) with program code that
complies to existing component models (CM).

2 Related Work

For synchronizing models with code several ap-
proaches exist: Methods for code-generation mainly
include model-driven development (MDD) (e.g. [2])
and round trip engineering (RTE) (e.g. [5]). Re-
garding the motivation of our approach, these ap-
proaches either allow only one-way synchronization
(MDD) or do not bridge the gap between abstraction
levels (RTE). Model reconstruction (e.g. [6]) aims to
construct models from code. These approaches create
persistent models and require considerable manual ef-
fort. Model execution (e.g. [3]) handles models as data
for model execution engines. These approaches can
bridge the gap between abstraction levels, but only
refer to behaviour models.

3 Process

Currently no approach exists to edit code in an ar-
chitecture model view, that bridges abstraction lev-
els, with an automatic two-way translation. To over-

come this gap, we now describe a process for integrat-
ing architecture model information with program code
complying to component models. The code will reuse
structures required by the CM framework in use, and
contain additional structures, which represent archi-
tecture model elements that cannot be expressed in
the CM language. The process makes explicit, what
traditionally is only implicit in the code. It is there-
fore called Explicitly Integrated Architecture Process.

3.1 Process Concepts and Elements

The process is based on three main concepts. Figure
1 gives an overview of the elements used within the
process and their interrelationships, and shows where
the stated concepts are used.

Model Integration Concept: The model inte-
gration concept describes how model information is
integrated with program code. In figure 1 the con-
cept provides vertical integration. It is used to inte-
grate and extract architecture model information from
a CM and the intermediate language in the program
code (e.g. [4]). The concept is based on the ideas of
Moritz Balz [1]. The code is statically analyzed for
program code structures that identify CM elements.
E.g. Java EE enterprise beans are identified via their
annotations on Java types. A model is built from
this analysis that represents the code in terms of the
CM meta model. Additional architecture information
from the intermediate language can be applied using
various techniques, such as marker interfaces or anno-
tations. The model can be edited in its model form,
or by editing the corresponding code structures.

Component 
Model 1

Programming Language
and Program Code

Architecture Model Transformations

ADL 1

Component 
Model 2 IAL ADL 2

Component 
Model n ADL n

Model 
Integration 
Concept

Figure 1: The elements of the process and where the
three main concepts (underlined) are located.



Intermediate Architecture Description Lan-
guage (IAL): The IAL is used to represent archi-
tecture information independently from the ADL and
the CM that are used to specify and implement the
architecture. It has the role to increase the process’
interoperability with different ADLs and CMs, and
to increase the evolvability of the approach. ADLs
and CMs have different kinds of information they are
able to describe. E.g. in contrast to ADLs, CMs of-
ten cannot describe a deep component hierarchy. The
IAL handles these differences using a profile concept
similar to UML profiles.
Architecture Model Transformations: In figure
1 the transformations provide the horizontal integra-
tion. Two kinds of transformations are used within
the process: (a) ADL models are synchronized with
IAL and CM representations. (b) Translations be-
tween interrelated profiles of the IAL are defined.

3.2 Process Steps

In the process, architecture model information is ex-
tracted from the code for editing, and integrated with
the code after editing or creating the model. The pro-
cess is visualized in figure 2. It can be started either
from code that complies to a CM – including code
that has not been developed using the process yet –
or from either a new, or an extracted ADL model.
The process defines three main activities:

Code

Code 
ó CM

ADLIAL ó
ADL

Inter-
module 
Transfor
mations

Code ó IAL

Code & 
CM ó
IAL

CM & 
IALó
Code

IALó
CM

Figure 2: Overview of the Explicitly Integrated Ar-
chitecture Process

(1) Code ⇔ IAL: An IAL model is created from
the code using the model integration concept. The
activity comprises two subactivities: In the subactiv-
ity Code to CM the code is translated into a model
of the CM meta model. In the subactivity Code &
CM to IAL this CM representation is translated into
an IAL model. The IAL model is enriched from the
code with information, that cannot be expressed in
the given CM, using the model integration concept.
(2) Intermodule Transformations: The IAL rep-
resentation is translated according to the features of
the involved languages. E.g flat architectures can be
represented hierarchically with one hierarchical level.
The transformations do not delete original informa-
tion. Therefore no information is lost.
(3) IAL ⇔ ADL: The IAL representation is trans-
lated into an ADL representation. The ADL model
can now be edited with its original editor. The
changed model can then be integrated with the ex-

isting program code by executing the steps in reverse
direction.

4 Conclusion

We are currently implementing Codeling, a tool for the
process based on the Eclipse IDE. The source code is
publicly available1. We evaluate the approach using
the CoCoME2 project and during the development
of Java EE programs in our working group. The cur-
rent implementation works with an EJB and CoCoME
codebase and allows for the extraction and integration
of Palladio and UML models. The approach allows for
translations between many CMs and ADLs, whereas
the tool is currently focused on Java-based CMs and
Ecore-based ADLs. However the tool could be ex-
tended to address further languages.

This paper gave an overview about the Explicitly
Integrated Architecture Process. It is used to edit
architecturally relevant code in architecture model
views. After a motivation, we addressed related work.
Then we stated the concepts and the steps within the
process. At last we described the evaluation.

References

[1] Moritz Balz. Embedding Model Specifications
in Object-Oriented Program Code: A Bottom-up
Approach for Model-based Software Development.
PhD thesis, Universität Duisburg-Essen, 2011.

[2] Alan Brown, Jim Conallen, and Dave Tropeano.
Introduction: Models, Modeling, and Model-
Driven Architecture (MDA) Model-Driven Soft-
ware Development. In Model-Driven Software De-
velopment. Springer, Berlin/Heidelberg, 2005.

[3] A. Hen-Tov, D. H. Lorenz, and L. Schachter. Mod-
elTalk: A Framework for Developing Domain Spe-
cific Executable Models. In Proceedings of the 8th
OOPSLA Workshop on Domain-Specific Model-
ing, 2008.

[4] Marco Konersmann and Michael Goedicke. A
Conceptual Framework and Experimental Work-
bench for Architectures. In Software Service and
Application Engineering, volume 7365 of Lecture
Notes in Computer Science. Springer Berlin Hei-
delberg, 2012.

[5] U. A. Nickel, J. Niere, J. P. Wadsack, and
A. Zündorf. Roundtrip Engineering with FU-
JABA. In Proceedings of the 2nd Workshop on
Software-Reengineering (WSR), 2000.

[6] A. van Deursen and C. Riva. Software architecture
reconstruction. In Software Engineering, 2004.
ICSE 2004. Proceedings. 26th International Con-
ference on, pages 745–746, May 2004.

1https://s3gitlab.paluno.uni-due.de/ADVERT/codeling
2http://cocome.org


