
Rapidly Locating and Understanding Errors using Runtime
Monitoring of Architecture-Carrying Code

Marco Konersmann
paluno – The Ruhr Institute for Software Technology

University of Duisburg-Essen
Essen, Germany

marco.konersmann@paluno.uni-due.de

ABSTRACT
Finding and understanding errors in software that is de-
ployed in the field and tested by beta testers or used in
production is a difficult and often time consuming task. If
the feedback to the developers is näıvely composed of log
messages, stack traces, and informal user feedback, it might
not contain enough information to locate the erroneous frag-
ments efficiently. It is thus slowing the dynamics in rapid
continuous software engineering scenarios. These errors can
more easily be found when the code is explicitly designed
to carry architectural specifications by intertwining struc-
ture and behavior models with the rest of the code. With
architecture-carrying code, (1) the steps leading to single
errors can be replayed for understanding and debugging;
(2) statistical information about errors can be related to
structure elements and behavior branches. In this paper we
present our idea of architecture-carrying code and its appli-
cation for error understanding to support rapid continuous
software engineering.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; K.6.3 [Management of Computing and
Information Systems]: Software Management—Software
Management, Software Development

General Terms
Design

Keywords
Runtime Monitoring, Rapid Continuous Software Engineer-
ing, Architecture-Carrying Code

1. MOTIVATION
Time-to-market is a relevant topic in software engineering.

As software is often a critical success factor for businesses,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RCoSE ’14, June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2856-2/14/06 ...$15.00.

the software is better ready earlier than later. That said,
every non-trivial software has a high probability to contain
bugs. One strategy to find bugs in beta state software is to
deploy it, and let beta testers use it in the wild to get error
reports1.

For analyzing the results of such tests, statistical data
about the fault frequency related to structural and behavioral
parts of the software can be helpful, as well as detailed
information about single instances of incorrect behavior.

Typical error reporting strategies comprise semi-structured
textual logs and corresponding log analyzer tools2. Such log
files often include information for localizing the source of
the failure, e.g. by stating the name of the failed operation
and the name of an exception. More tricky faults, that do
not result in exceptions but false results are harder to find,
and require intensive logging. The effort for extracting single
instances of incorrect behavior from such log files depends
heavily on the appropriateness of the log messages. This
can result in a high effort, and thus be slow and expensive.
That is unwished, especially in rapid continuous software
engineering (RCSE) scenarios. Additionally, it is hard to
extract meaningful statistical data from these log files.

For a better analyzability of such scenarios, we propose
a technique for systematically storing model-based usage
scenarios. The data is available for replaying the scenario, as
well as providing a good basis for visualizing statistical data.

2. FOUNDATIONS

2.1 Architecture-Carrying Code
The technique is based on architecture-carrying code [4].

The idea of architecture-carrying code is to represent ar-
chitectural models in source code with sophisticated code
structures. These code structures are not directly changed
with source code editors, but with model editors. These
model editors allow to edit the architecture in a represen-
tation that software architects are comfortable with, e.g.
UML or formal specification languages. The editor extracts
the architecture in the underlying code base and presents a
model to interact with. Changes to the model are reflected
by changes to the underlying code base. The model view is
volatile. It only exists as long as the model editor is in use.
With architecture-carrying code, the architecture model is

1e.g. Blackberry Beta Zone (www.blackberry.com/beta),
Swype Beta For Android (http://beta.swype.com/)
2for example Graylog2 (http://graylog2.org/) or logstash
(http://logstash.net/)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

RCoSE’14, June 3, 2014, Hyderabad, India
ACM 978-1-4503-2856-2/14/06
http://dx.doi.org/10.1145/2593812.2593814

10

available at compile time as source code structures and at
run time via reflection mechanisms.

2.2 State Machines
The definition of state machines used in this paper are

based on the definition by Balz in [1]. The definition, as well
as the implementation of the state machines, is simplified
for this paper, because not all features are necessary for this
example.

A state machine consists of states, variables, and transi-
tions between states. One state is the initial state. Variables
are typed and have initial values. Transitions may have
zero or more action labels that describe the activities that
happens between these states. These activities change the
variables. The actual change of variables is not part of the
model. Transitions also have guards. Guards are proposi-
tional expressions over the variables. A transition can only
be fired if its guard evaluates to true.

2.3 OSGi Services
Our example is based on the use of OSGi3. OSGi is an

industry-accepted java modularization framework. OSGi
includes a so-called service layer, which allows to create com-
ponents that offer and require services. Service components
in this context are named java objects that provide or require
java interfaces. They can be dynamically started and stopped
at run time. Services in this context are the java interfaces
that are provided or required by service components. The
type of a service is defined by its interface. Required or
provided services are registered in a central registry within
the runtime environment. A service type can be provided
or required by multiple service components. When a service
component requires a service type, it is informed about reg-
istered service instances of that type using callback methods.
This technology can be used to build a component-based
system. In this paper we use OSGi service components to
represent components, their registered services as provided
interfaces, and their required services as required interfaces.
Component types define which interfaces are provided and
required. Multiple instances of one component type exist,
when multiple components provide and require the same
services.

3. RUNNING EXAMPLE
Figure 1 shows the most abstract level of the architecture

description of a fictional massively multiplayer online game
(MMOG) designed for Android smartphones, called “Doing
Good and Evil Things (DoGET)” which will serve as a run-
ning example in this paper. DoGET is a game in which
multiple players can perform quests in a common virtual
world with their heroes. The figure shows the static struc-
ture of the system. The system’s architectural structure is
modeled in UML.

On this level the system consists of seven components.
Please note that in this paper we use the term “component”
to describe a component type that is instantiated exactly
once if not stated otherwise. The components Input, Sound,
and Rendering handle input and output to the user. Net-
workMgmt provides means to synchronize the common infor-
mation with other players, including the state of the common
quest. The component WorldMgmt handles the position and

3http://www.osgi.org

Figure 1: The highest level of the architectural static
structure of the massively multiplayer online game
DoGET

Figure 2: The inner architectural structure of the
QuestMgmt component

actions of all entities in the game. HeroMgmt has operations
to manage the state of the player’s hero.

In this paper we will focus on the component QuestMgmt,
which manages multiple quests. Figure 2 shows the inner
architecture of the QuestMgmt component. This component
comprises the component QuestFacade and multiple Quest
components. The QuestFacade requires zero or more imple-
mentations of the interface IQuest. The component type
Quest is defined to provide the interface IQuest. Several
instances of the component type Quest can exist in parallel.
A Quest instance defines a behavior in terms of a state ma-
chine, as they are defined in section 2.2. Figure 3 shows the
state machine of the Quest instance that will be our example.
The example program is implemented with the OSGi frame-
work, which is available for the Android operating systems
for mobile devices.

4. RUN TIME MONITORING
For systematically storing model-based usage scenarios,

we extend the use of architecture-carrying code [4]. First,
we create a model of the software architecture. The archi-
tecture model comprises static and dynamic structure, as
well as static and dynamic behavior. Due to the approach of
architecture-carrying code, the architecture model is avail-
able at compile time as source code structures and at run
time via reflection mechanisms.

In our approach, we store the history of behavior models
and dynamic structure models. When errors occur, the his-
tory can be tagged as erroneous. In the following, we show
how the architecture is designed in terms of architecture-
carrying code, and how the dynamic behavior and the dy-
namic structure of this system is stored. This information
can be used to locate and understand problems on the ar-
chitectural level. We will present this technique and its
implications using the running example.

One key aspect for architecture-carrying code is the def-
inition of source code structures for architectural concepts.

11

Figure 3: The state machine for the example quest

Thus in this example we have to define source code structures
for structure and behaviour model elements.

4.1 Structure Modeling
The system’s architecture is modeled in UML. For making

these structure models available in terms of architecture-
carrying code, we have to define source code structures for
(1) components, (2) their interconnection, and (3) interfaces.
The source code structures presented here are specifically
designed for the execution framework in use: OSGi.

The source code structure of a component comprises a
Java class and a component descriptor. The class name
reflects the component name. The component descriptor is an
XML file, including the name, and the implementation class
name. Figure 4 shows the representation of the QuestFacade
component in UML in the upper part, and the representation
as Java class the the corresponding OSGi service component
descriptor in the lower part.

An interface with operations in UML is represented as
a Java interface with the corresponding Java methods. A
component can provide interfaces. In UML this is represented
with an Realization edge to an interface. In the source code
the components class implements the corresponding interface
class and the corresponding methods. The body of these
methods is irrelevant for the architecture and thus not part
of the source code structure. Additionally, OSGi requires the
component descriptor to state the provisions. Figure 5 shows
these representations. For simplicity reasons the methods
are not shown in this figure.

A component requiring interfaces is modeled in UML using
the Usage edge from a component to an interface. Required
interfaces are defined in the source code using an attribute,
a setter, and an unsetter method. The concrete represen-
tation of the relationship depends on the cardinality. For
1..1 relationships, a simple attribute is set and unset in
the corresponding methods. In 1..n and n..m relationships,
references to the bound instances are added and removed
from a collection. OSGi also requires a corresponding compo-
nent descriptor. Figure 6 shows these representations. The
cardinality is not shown in the UML diagram.

Connections between required and provided interfaces are
automatically managed by the OSGi runtime. Thus the
source code structures described above also include the bind-
ing of component instances to the required interfaces.

4.2 Storing Structure History
The structure of our example system is dynamic. Quests

can be registered and unregistered at runtime. The history
of this coming and going of service components is stored
in our approach. Conceptually, this is performed by an
aspect, that executes when a service component is registered,
unregistered, or modified in the framework. These events

Figure 4: The representation of the QuestFacade
component as UML, and as Java source code with
the corresponding OSGi component descriptor

Figure 5: The representation of provided interfaces
as UML, and as Java source code with the corre-
sponding OSGi component descriptor. For simplic-
ity reasons, the signatures of the implemented meth-
ods is not shown.

are stored in sequence with a timestamp. Technically, this is
performed by an OSGi EventListenerHook that is informed
about such events by the OSGi framework.

4.3 Behavior Modeling
For developing architecture-carrying code in terms of state

machines as defined in section 2.2, we need to define source
code structures for states, transitions, variables, guards, and
action labels. For this we use the structures that have already
been defined by Balz in [1].

Balz defines a state as a Java class implementing an in-
terface IState. That interface does not define any operation,
but is just for marking a class as a state definition. The
name of the state is defined by the class name.

A state machine contains variables that are queried by
guards and manipulated by actions when transitions are
executed. These variables are represented as get (for queries)
and set (for manipulation) methods in a java class (the
variable class). An instance of the state machine needs an
instance of this class to query and manipulate actual variables
during its execution.

The source code structure of a transition is an operation
within a state class, that has a Transition annotation. Tran-
sition operations have one parameter, the actor. The actor
is a reference to the underlying source code that is not part
of the behavior model. I.e. these details of the behavior is
irrelevant on the architecture level. At run time an instance
of the actor class is provided by an execution framework.
The action labels that are associated with transitions are
represented by method calls to this actor in the transition
method body. The actor has a reference to the variable
class instance that is managed by the state machine. The
execution of these methods manipulate the variables in the
state machine using the set methods of the variable class.

12

Figure 6: The representation of required interfaces
as UML, and as Java source code with the corre-
sponding OSGi component descriptor. The cardi-
nality is not shown in this UML diagram.

The Transition annotation has two parameters: a target
state class, and a contract class. The target state class is
the state that follows the current state when the transition
was executed. The contract class contains the guard. It
implements the interface IContract. The IContract interface
takes a variable class as class parameter, and provides the
methods checkCondition and validate. The method check-
Condition represents the guard of the transition, and returns
whether the guard evaluates to true. For this, it uses calls
to the variable class instance. The method validate com-
pares the variables before and after the transition execution.
The validate method exists to ensure at run time that the
method calls representing the action labels updated the state
machine’s variables as expected.

Figure 7 shows the source code representation of the state
CollectedLegendaryItem, and one referenced contract class
ReturnToEvilContract. The class Heroes is at the same time
the variable class and the actor class.

The operations within the state class are the transitions.
In our example (cf. figure 3) the state LegendaryItemCol-
lected is the source for two transitions, one named doEvil,
and one named doGood. The first transition has a guard
[decisionEvil]. The guard is reflected in a call to the actors
operation getDecisionEvil in the contract in the lower part of
figure 7. The action increaseEvilness increases the evilness
of the heroes. This is reflected in the operation call to the
actor’s increaseEvilness operation. The second transition
has an action increaseGoodness, which increases the good-
ness of the heroes, and a guard [!decisionEvil] (the latter is
not shown in the figures). The detailed behavior, how the
evilness or goodness of the heroes is increased is considered
irrelevant for the architecture.

4.4 Storing Behaviour History
During the beta tests or at production time, we store the

history of the dynamic behavior. To achieve this, the source
code structure for the transition operations is extended to
store information about the fired transition. Aspect oriented
programming [3] is used for not having to change the static
behavior definition in the source code.

Figure 7: The source code structure for the state
LegendaryItemCollected with a guard.

The aspect is executed around each transition method.
It first stores the current variables and their values using
the variable class instance by identifying and calling its get
methods. It then executes the transition method. Afterwards
the new values of the variables are collected. Both variable
states are stored together with the executed transition and a
time stamp.

4.5 Error Dashboard
Using our approach, the structural and behavioral history

are stored at run time. Using an error reporting mechanism,
this history can be transmitted — enriched with an informal
error description — to the developers to provide feedback.
The history transmitted to the developers can be loaded into
an analyzing tool. The tool uses the structure and behavior
history data to replay the scenarios that lead to errors.

Our idea is that an initial view is the static structure of the
system. This structure can be extracted from the source code,
because it is encoded in the predefined source code structures.
The architectural structure can be represented as a UML
component diagram. The behavior can be represented by
state machine diagrams.

A single set of history data, enriched with error informa-
tion, allows the erroneous behavior to be precisely located in
the dynamic behavior, because it is related to a transition
in a state machine. The state machine in turn is related
to a dynamic structure element. The dynamic structure
element has a static representative. The dashboard can show
the location in this hierarchy, following Shneiderman’s visu-
alization mantra [7]: overview, zoom and filter, details on
demand. In the static structure the error can be located
as an overview, by color coding erroneous components. For
big architectures, zooming and filtering can make sense, by

13

zooming into hierarchical architectures, and filtering erro-
neous components. Details on demand are provided when
the perspective is changed from the static to the dynamic
architecture. When the history data is loaded, the developer
can step through the fired transitions and structural changes.
This is possible because the history is stored with discrete
time information.

When multiple histories are loaded into the dashboard, a
heatmap can be shown in all parts of the dashboard. The
static structure can show on various levels where the most
errors or, depending on the error meta data, where the most
severe errors happen. The dynamic structure can give further
details for multi-instance components. The static behavior
can show behavior branches with high error rates.

5. RESULTS
The technique shown in this paper can be used in the

beta testing and the production phase for processing testers’
and users’ feedback. Single history sets can be used for
debugging. The replay mechanism allows an understanding
of the system’s dynamics on the architectural level when the
error occurred. The dashboard can show the state of the
program when the error occurred, and developers can jump
through the states the program went through, before the
error happened.

In contrast to typical debugging tools, with our approach
the software can be analyzed a posteriori, when the error
actually happened. When software is debugged using cur-
rent tools, it is sometimes hard to create the environment
that led to the error. Thus the history can ease the error
understanding. This is important for RCSE, because a faster
understanding allows faster fixes, and thus shorter release
cycles.

Greater sets of history can be used for creating heat maps,
that show fault frequency related to structural and behavioral
parts. This can be used as a basis for planning error fixing
resources, or for developing an error fixing road map. This
overview can also be a benefit for RCSE scenarios, because
it allows to see where the most errors happen.

6. TOOLING
The tooling for the idea presented in this paper is not fully

implemented yet. The source code and run time represen-
tation of static behavior models in terms of state machines
in java source code has already been implemented [1]. An
execution environment and a code editor that shows the code
as a state machine diagram and allows for arbitrary editing
are already available and are used in productive applications
in our research group. For the approach presented in this
paper, we extended this technology with the collection of
history information (cf. section 4.4).

An editor for showing OSGi structures using UML does not
exist yet. We are currently defining source code structures
and developing editors for a variety of component frameworks
like OSGi. However, a starting set of source code structures
for OSGi has already been developed (cf. section 4.1). For
this set of structures, a history collection mechanism has
already been implemented (cf. section 4.2). The major next
steps of tool development is to complete the structure editor
and to develop the dashboard application.

7. DISCUSSION

The technique we propose has implications to the projects
that use them. First of all, the architectural source code of the
application is not completely in the hand of the programmers,
but has to follow certain structures. While this seems to be
a considerable constraint to some programmers, we believe
that in systematic software engineering projects, most of the
code already follows very specific structures. When software
is developed based on an execution framework, like OSGi, the
code has to follow its rules to be executable. The specified
architecture can hardly be developed in another way than
the one our source code structures enforce, if the framework
is used. Deviance from such structures often result in code
that is worse to maintain, because the same concept within
an application (e.g. a component) has different types of
implementation styles. The same holds for the behavior
models. When the behavior is specified by a state machine,
the code should systematically follow specific structures for
implementing this state machine. The approach used in this
paper explicitly states these structures. We expect the code
structures to rarely be changed manually in code, because it
can be opened and fully edited by opening it in a diagram
view.

Our approach is focused on the architectural level. Soft-
ware is often specified on this level in some notation, e.g. in
box-and-arrow charts or UML. Sometimes behavior is speci-
fied in a formal notation, e.g. as state machines. On lower
levels of the system such specifications are rare for many
applications. This is especially true for mobile applications.
According to our experience in this domain these are often
parts of the system that can be developed without formal
behavior models. At these levels, we think the programming
language is sufficient for understanding the structure and
the behavior, so that our approach is not helpful there.

Currently the approach supports two ways of describing
formal behavior: state machines and process models [1].
Other behavior model types are in use. The requirements for
developing source code structures and run time environments
for such models is described in [1]. More model types can be
used if the corresponding source code structures and runtime
environments are developed.

With our approach errors on the architectural level can
be located and debugged on the abstraction level of the
architectural model instead of the level of programming
languages. This probably eases the understanding of errors,
as long as the errors are on the architectural level. Error
location and debugging on a lower level is explicitly not
addressed in our approach. However, our approach might
still be helpful in this case, because it requires the code
to be relatively systematically structured, and assists the
developers in doing so.

Our approach is based on the idea to store enough informa-
tion for efficient error location and understanding. The latter
implies an overhead in terms of time and storage demand.
The main overhead is the stored history data, especially for
behavior models, because each transition execution is stored
with all variable values before and after the transition, and
the execution comprises method calls to the guard, for the
actions, and for validation. With our approach we aim at
a high abstraction level of the system specification. Due to
this abstraction level, the history is effectively traceable and
practical to be stored. However, this is strongly depends on
the actual system, and what is understood as the architecture
level in that system. The main driver for storage overhead is

14

the granularity of transitions and states, and the size of the
stored variables. The overhead of the structure history seems
to be negligible. We are planning to validate the overhead
in a systematic study.

8. RELATED WORK
Other work that is related to our approach can be found

in different directions. Architecture dashboards show the
runtime architecture of systems. Monitoring frameworks and
log analyzers generate events during the system runtime that
can be monitored and analyzed. Work related to architecture-
carrying-code is found in the communities of runtime models
and model-driven development.

Runtime models of software architecture are used often
in the context of self-adaptive and self-healing systems (e.g.
[8]). These approaches are not designed to help locating and
identifying runtime errors, but to automatically manipulate
the architecture based on predefined rules. As such, the do
not explicitly target RCSE scenarios.

Software monitoring frameworks (e.g. Kieker [9]) generate
detailed information about the software at run time. This
is of benefit for detailed debugging and for an overview
about the general health of the software. These frameworks
are targeted at detailed information, and typically do not
bridge the semantic gap between the running system and its
specified architecture.

Managing multiple representations of software design and
specifically architecture has been subject to other fields of
research. Related to the paper at hand is the field of Model-
Driven Software Development (MDSD) (e.g. [2]), model
execution (e.g. [5]), and round trip engineering (e.g. [6]).

MDSD concentrates on deriving code from models. The
models and the code are two representations of the architec-
ture that are independently subject to evolution and main-
tenance. Changes in the specification can be taken over
automatically in the implementation. When the architec-
ture changes in the implementation, these changes cannot
be automatically taken over in the specification.

Model execution reduces the representations to the models
only. The specifying model is enriched with clear seman-
tics. Thus the models can be executed. These models are
typically interpreted and thus have probably a weaker per-
formance than our approach. However this is still subject to
a systematic study.

Round trip engineering (RTE) describes techniques to
synchronize models and code. The models used in RTE are
very detailed and technical, e.g. UML class diagrams. RTE
thus allows for two-way synchronization, but does not bridge
the gap between abstraction levels.

9. SUMMARY
In this paper we presented our idea for rapidly locat-

ing and understanding errors using runtime monitoring of
architecture-carrying code. Our idea is to shorten release
cycles in RCSE scenarios, by providing a technique to easier
locate and understand errors that come up while beta test-
ing or in production. By shortening the time to locate and
understand an error, systems can be more rapidly fixed. We
also provide a dashboard for the developers to visualize the
hot spots in the program in terms of error frequencies.

The technique we present is based on the approach of
architecture-carrying code. In this approach, the source

code has to follow certain structures, so that architectural
information, that is usually only implicitly available in source
code, is explicitly available at compile time and at run time.

Ongoing and future work is to finish the implementation
of the prototype. When the prototype is available, we plan
to evaluate the performance of the approach.

When the live presentation of remote structure and be-
haviour is working, we consider extending the technique to
remotely change the behavior or structure of the software
running on mobile devices. This way, we could provide short-
term help for users that ran into malicious systems states.
When the user is happy, in the background the root cause
can be fixed, and the patch uploaded to all users at run time.

10. REFERENCES
[1] M. Balz. Embedding Model Specifications in

Object-Oriented Program Code – A Bottom-Up Approach
for Model-Based Software Development. PhD thesis,
Univeristy of Duisburg-Essen, 2011.

[2] A. Brown, J. Conallen, and D. Tropeano. Introduction:
Models, Modeling, and Model-Driven Architecture
(MDA) Model-Driven Software Development. In
S. Beydeda, M. Book, and V. Gruhn, editors,
Model-Driven Software Development, chapter 1. Springer,
Berlin/Heidelberg, 2005.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP. SpringerVerlag, 1997.

[4] M. Konersmann and M. Goedicke. A Conceptual
Framework and Experimental Workbench for
Architectures. In M. Heisel, editor, Software Service and
Application Engineering, volume 7365 of Lecture Notes
in Computer Science, pages 36–52. Springer Berlin
Heidelberg, 2012.

[5] M. P. Luz and A. R. da Silva. Executing UML Models.
In 3rd Workshop in Software Model Engineering
(WiSME 2004), 2004.

[6] U. A. Nickel, J. Niere, J. P. Wadsack, and A. Zündorf.
Roundtrip Engineering with FUJABA. In Proc of 2nd
Workshop on Software-Reengineering (WSR), Bad
Honnef, Germany, 2000.

[7] B. Shneiderman. The Eyes Have It: A Task by Data
Type Taxonomy for Information Visualizations. In
Proceedings of the 1996 IEEE Symposium on Visual
Languages, pages 336–343, Sep 1996.

[8] S. Sicard, F. Boyer, and N. De Palma. Using
components for architecture-based management: The
self-repair case. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages
101–110, New York, NY, USA, 2008. ACM.

[9] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and
dynamic software analysis. In Proceedings of the 3rd
joint ACM/SPEC International Conference on
Performance Engineering (ICPE 2012), pages 247–248.
ACM, April 2012.

15

