
Towards Effective Visual Modeling of Complex Software Product Lines*

André Heuer, Kim Lauenroth, Marco Müller
Paluno – The Ruhr Institute for

Software Technology
University of Duisburg-Essen, 45127 Essen

{andre.heuer | kim.lauenroth |
marco.mueller}@paluno.uni-due.de

Jan-Nils Scheele
adesso AG

Stockholmer Allee 24, 44269 Dortmund
scheele@adesso.de

Abstract

The variability of a software product line is one of
the main reasons for complexity in product line engi-
neering. To deal with this complexity, several re-
searchers propose an orthogonal approach for varia-
bility modeling. The central idea of these approaches
is to document the variability and the product line arti-
facts in separate models and document the impact of
the variability in the form of relationships between the
variability model and the product line model.

From a theoretical point of view, the orthogonal
variability modeling approach offers several benefits
over other variability modeling approaches. However,
the visualization of the models and an effective visual
modeling with the orthogonal approach constitute a
significant challenge. In this paper, we describe sever-
al challenges for the effective visual modeling based
on the orthogonal approach and describe solution
ideas that address these challenges. As a first step to-
wards an evaluation of our solution ideas, we present
two different empirical evaluation strategies.

1. Introduction

The variability of a software product line is one of
the main reasons for complexity in product line engi-
neering [15]. To deal with this complexity, several
researchers propose an orthogonal approach for varia-
bility modeling [1], which offers several benefits over
the integrated representation of variability in develop-
ment artifacts [12]. An orthogonal approach docu-
ments the variability of the product line in a separate
model and the effects of the variability on the product
line artifacts (e.g. requirements, design, or code) by
means of relationships between the variability model
and the product line artifacts (see Fig. 1).

Recent examples of such orthogonal variability
modeling approaches are feature-based model tem-
plates [4], feature transition systems [3], and variable
I/O-automata [11]. These and similar approaches can
be considered as successful approaches for document-

* This paper was partially funded by the DFG, grant PO 607/2-1

IST-SPL.

ing variability in various development artifacts. How-
ever, the purpose of these and similar approaches is the
analysis or the verification of the documented artifacts.
The effective visualization of the variability model or
the product line artifacts is not their focus. However,
an effective visualization and support for the creation
of such models (which we call visual modeling) is a
crucial factor for the successful industrial application
of such approaches.

Artifact Models
Variability
Dependency

Orthogonal
Variability Model
(OVM)

Design Realization Test Requirements

= Variability

= Commonality

Variant Variant

Variation
Point

Fig. 1. Orthogonal Representation of Variability [14]

The goal of this paper is to go a first step towards
an effective visual modeling of complex software
product lines based on an orthogonal variability mod-
eling approach. In order to achieve this goal, this paper
provides the following contribution:
1) Challenges for an effective visual modeling: In or-

der to understand the meaning of effective visual
modeling, this paper discusses challenges for the
visual modeling in product line engineering

2) Presentation of solution ideas: We are currently
working on different approaches that address our
identified challenges for visual modeling in product
line engineering. In this paper, we present our pro-
totypical modeling environment that implements
the solution ideas for the identified challenges

3) Discussion of empirical evaluation strategies: Vis-
ual modeling approaches have to prove their worth
during product line engineering activities. Howev-
er, the evaluation of a modeling environment in a
complex case study constitutes a significant effort.
We therefore discuss different strategies and crite-
ria for the empirical evaluation of the presented so-
lution ideas in smaller experimental settings.

The remainder of this paper is structured as fol-
lows: Section 2 presents our identified challenges for
an effective visual modeling. Section 3 discusses relat-
ed work in terms of existing modeling tools. Section 4
and 5 presents our modeling environment and our so-
lution ideas. Section 6 presents the evaluation strate-
gies and Section 7 closes this paper with a summary
and an outlook.

2. Challenges of an Effective Visual Model-
ing in Product Line Engineering

In this section, challenges of an effective visual
modeling are discussed. We distinguish challenges
related to the modeling of variability and challenges
related to the modeling of product line artifacts.

2.1. Challenges related to the Modeling of Var-
iability

The variability model of a product line can become
large and complex. Industrial case studies report on
product lines with several hundred and even more var-
iation points and variants [2; 14]. From this observa-
tion, we derive the following challenge:

C1: An effective visual variability modeling ap-
proach must support the creation and visualization of
a variability model with several hundred variation
points and variants.

The creation of a variability model especially in-
cludes the definition of constraints between variation
points and variants (e.g., one variant excludes another
variant). However, representing such a relationship in
a large variability model is difficult, since the corre-
sponding variants (or variation points) may not be po-
sitioned close to each other. From this observation, we
derive the following challenge:

C2: An effective visual variability modeling ap-
proach must support the definition of variability con-
straints in large and complex variability models.

Constraints in a variability model are not only a
challenge in the creation process of a variability model,
but also a challenge for the understanding of a variabil-
ity model [5]. From this observation, we derive the
following challenge:

C3: An effective visual variability modeling ap-
proach must support the well-arranged visualization of
constraint relationships in large and complex variabil-
ity models.

Another important aspect for the visualization of
constraints is the visualization of the effects of a con-
straint during the product derivation process in appli-
cation engineering. In a model, it should, for example,
be clearly visible if a variant is no more selectable be-
cause of a constraint dependency to another already
selected variant or variation point. From this observa-
tion, we derive the following challenge:

C4: An effective visual variability modeling ap-
proach must support the visualization of effects of con-
straint relationships in large and complex variability
models.

2.2. Challenges related to the Modeling of
Product Line Artifacts

Even without taking product line engineering into
account, the effective visual modeling of a system is
considered to be a significant challenge [13]. There-
fore, we focus in this section on challenges that are
related to product line engineering and neglect chal-
lenges that also apply to the modeling of individual
systems (e.g. complexity and size of design models).
However, we necessarily have to take into account that
product line models become at least as large and com-
plex as models from single system engineering:

C5: An effective visual variability modeling ap-
proach must support the creation and visualization of
large and complex product line models.

A product line consists of common and variable ar-
tifacts [14]. Therefore, the visualization of the variabil-
ity quality (being common or variable) of a product
line model element is an important challenge:

C6: An effective visual variability modeling ap-
proach must provide the information whether product
line artifacts are common or variable.

However, visualizing the variability quality is not
enough. The definition and visualization of the rela-
tionships between the variants of the variability model
and the product line models is also an important chal-
lenge, since these variability relationships define
whether an artifact is considered to be common or var-
iable. The definition of the variability relationship is a
challenge, since the variability model as well as the
product line models may become large and complex.
From this observation, we derive the following chal-
lenge:

C7: An effective visual variability modeling ap-
proach must support the definition of variability rela-
tionships between large and complex variability mod-
els and large and complex product line models.

Beside a visual mechanism for the definition of re-
lationships, we consider the visualization of the varia-
bility quality of model parts in a product line models as
an important challenge.

C8: An effective visual variability modeling ap-
proach must clearly visualize common and variable
parts in large and complex product line models.

3. State-of-the-Art of PLE Tools and Visu-
alization

This section provides an overview of tools that en-
able the modeling of a product line including the vari-

ability model and product line models and their rela-
tion.

The software pure::variants [17] is an industry-
strength product designed for the specific needs of
large projects. In pure::variants, variability is modeled
in a feature tree. The relationship between variants and
product line model elements is represented by key-
words or structures, e.g. structured comments in source
code, special attributes in XML, or file paths. The rela-
tionship is, however, not emphasized in the visual rep-
resentation, making it hard to trace the impact of vari-
ants.

Colored Integrated Development Environment
(CIDE) [9] is a tool for visualizing the implementation
code which is related to different variants. In CIDE,
colors are used to distinguish the variable implementa-
tion parts. Each variant is represented by a specific
color, and the related implementation parts are colored
accordingly. This concept can also be used to annotate
e.g. whole files, directories, or structures in XML files.
When variants are selected, filters can be used to hide
the parts that are not relevant. The usage of different
colors reduces the scalability of the approach, since
people can only distinguish a limited number of colors
and, as mentioned above, in product line engineering it
is common to have several hundred variants.

FeatureMapper [7] uses four mapping views to vis-
ualize relationships: (1) The Realization View empha-
sizes the artifacts used to realize a selected variant. The
other elements are shown in grey. (2) The Variant
View acts like the Realization View, but additionally
emphasizes all common artifacts. (3) The Context
View can be used to display the relationships by col-
ors: each variant is represented in a different color
which is then also used to color related product line
model elements accordingly. (4) In the Property-
Changes-View, the properties, like cardinalities, are
emphasized by showing the changes and hiding the
parts of the domain model that are not relevant for this
change. The Realization View and the Variant View
emphasize the information that is in focus, while keep-
ing the context visible. The Context View has the same
disadvantages as CIDE, due to the coloring effect for
distinguishing variants. The Property-Change-View
addresses the issue that changed properties are not new
or removed elements. This issue is not addressed by
the other approaches, but not in the focus for our tool.

In Stoiber et al. [16], a set of visualization aids are
presented. This approach uses decision tables for vari-
ability modeling. The visualization of the product line
models directly depends on the selection of variants in
the decision table. At the beginning of the decision
process, the complete product line model is shown.
Each decision tailors the model by removing artifacts
that are not part of the derived product based on the
variability model. When all decisions are made, the

remaining model is the application model. Further-
more, many visualization aids are provided to support
coping with the complexity of the domain model: Hor-
izontal abstraction hides views that are not necessary
for the current selection. Vertical abstraction hierarchi-
cally hides objects within views. Visual pointers are
used for representing the relationships between the
variants and the product line model. When a variant in
the decision table is selected, the related product line
model elements are highlighted, and related constraints
are shown. In addition, the Impact View of a variant is
a temporary view on the model that shows the affected
domain model artifacts, while hiding all unrelated ele-
ments. The automatic, decision-based tailoring of the
domain model in this approach facilitates the impact
analysis before decision-making by selecting variants
and exploring their effects in the accordingly tailored
model.

The presented tools allow to model and visualize
variability models and simple relations to development
artifacts. The derivation of applications by selecting
specific variants is also supported by the tools. How-
ever, none of these tools provide dedicated mecha-
nisms that address the modeling of large and complex
product line models nor the support of the OVM.

4. Tool Support for Model-based Product
Line Engineering

This section gives an overview of our prototypical
tool environment which we used to implement our
solution ideas for the challenges presented in Section
2. We call our environment Remidemmi, which is the
abbreviation for Requirements Engineering and Man-
agement in Domain Engineering with Multi-Model
Interaction.

4.1. Remidemmi – Technical Overview

Our tool implementation is written in Java code and
is based on the Eclipse Rich Client Platform (RCP)1.
Eclipse is well known as an Open Source framework
that offers a loosely coupled and dynamic plug-in ar-
chitecture. For example, all Eclipse IDE´s (e.g. for
Java or C development) are based on the Eclipse RCP
framework and just a set of plug-ins that extend the
core components with the functionalities needed to
develop, compile, and debug Java or C code. We also
used this framework and extended it according to our
needs, because it allows us to still integrate new mod-
els into the current framework later on. We used addi-
tional frameworks for the development of our tool. The
extensions we mainly used are listed below:
– Eclipse Modeling Framework (EMF)2. This is a

modeling framework for code generation. It sup-

1 See www.eclipse.org/rcp
2 See www.eclipse.org/emf

ports creating meta models and generating code
based on the meta model.

– EMF Validation Framework3. This framework
allows for applying validation methods to instanc-
es of EMF models.

– Graphical Editing Framework (GEF)4. The GEF
is a framework that supports the developer in cre-
ating visual editors, e.g. model editors.

– Graphical Modeling Framework (GMF). The
GMF is a code generation framework that gener-
ates a GEF based editor on the basis of an EMF
model.

Additionally, we used the Java Binary Decision Dia-
gram5 implementation (JavaBDD) as SAT-Solver im-
plementation. JavaBDD was used because the Boolean
equations of the variability model formalization can be
efficiently evaluated by BDDs. JavaBDD was isolated
in a separate plug-in to capsulate the functionality.

Fig. 2 Overview of the Remidemmi UI

4.2. Editors in Remidemmi

The user interface of our tool is based on a multi-
window interface, i.e. different windows (so-called
views) can be opened around multiple editor windows.

Fig. 2 gives an overview of the user interface of
Remidemmi. The central elements in the user interface
are the editors. They are placed in the middle of the
window, marked with (A). The frame marked with (B)
contains the tool palette for the editor, where the tools
(e.g. the model elements, zoom, selection, notes, etc.)
can be selected and applied to the main editor. The
Model Explorer can be found in (C). It shows a hierar-
chical list of all types of models that are available and
available instances of the models. In the lower left cor-
ner (D), the outline view is shown, which gives an
overview of the current model in the editor and the

3 See http://eclipse.org/modeling/emf/?project=validation
4 See www.eclipse.org/gef
5 See javabdd.sourceforge.net

possibility to navigate through the model. Beside the
outline view, in the frame marked with (E), additional
views are available. An important view is the proper-
ties view that allows the manipulation of the properties
of the currently selected model element. Additional
available views are the mountain view and the connec-
tion view that will be described in Section 5.
Remidemmi provides several editors for the specifica-
tion of variability in product line artifacts. In the fol-
lowing, the different available editors are briefly de-
scribed.

Variability Model Editor. This editor supports the
creation of a variability model in the OVM notation
(cf. [14]). The editor is shown in Fig. 3.

Fig. 3 The OVM editor

Component Diagram Editor. The notation for
component diagrams is based on a simplified UML
notation. However, we use rectangles for each compo-
nent. Interfaces between components are shown as
lines. Fig. 4 shows the editor.

Fig. 4 The component diagram editor

I/O automaton editor. In Remidemmi, I/O autom-
ata are called state machines. They model the internal
behavior of the components and their communication
triggered by events. Therefore, a component (modeled
in the component diagram editor) may contain a state
machine. Fig. 5 shows the editor and the events view.

B

A

D
E

C

Fig. 5 I/O automaton editor and events view

Message sequence charts editors. Message se-
quence charts (MSC) require two editors: one for the
hierarchical (h)MSC and one for the basic (b)MSCs.
The model explorer allows creating one hMSC. The
hMSC may contain several bMSCs. The corresponding
editor can be opened by a double-click on the bMSC in
the hMSC editor. Fig. 6 shows both editors (left-hand
side hMSC, right-hand side bMSC).

Fig. 6 hMSC and bMSC editor

Computational Tree Logic (CTL) editor. The
CTL editor is a hierarchical editor that supports the
composition of CTL expressions. Below a CTL ex-
pression, operands have to be created pointing to a
specific state in a state machine. Every operand can be
negated. In the CTL expression, the operands have to
be selected as well as an operator between them. Fig. 7
shows a simple CTL expression in the editor.

Fig. 7 CTL expression in the CTL editor

Activity diagrams editor. We used a reduced set
of model elements for the activity diagrams editor. The
editor only supports activities themselves and deci-
sions. A screenshot of the editor is shown in Fig. 8.

Fig. 8 Activity diagram editor

5. Addressing the Challenges

This section presents solution ideas that are imple-
mented in our tool that are addressing the specific
challenges introduced in section 2.

5.1. Modeling Variability

Variability modeling tools allow creating variabil-
ity models and provide different zoom levels for visu-
alizing the variability model. In order to get an over-
view of a large variability model, the engineer has to
choose a high level zoom or has to look at parts of the
variability model.

In order to improve the visualization of large and
complex variability models including relationships, we
have developed two solutions ideas: the mountain view
(Section 5.1.1) and the lasso view (Section 5.1.2). For
improving the visualization of constraint effects in a
variability model, we have developed a coloring mech-
anism (Section 5.1.3).

5.1.1 Mountain View for Variability Models
The idea of the mountain view is based on abstrac-

tion and allows the engineer to decide, which elements
he wants to display. The mountain view introduces
abstraction layers that can be used to include or ex-
clude variability model elements. The lowest abstrac-
tion layer shows the whole diagram with all elements
of the variability model. All further layers are hierar-
chically ordered and impose specialization on the ele-
ments, meaning that each element on one layer also
appears on all lower layers.

The layer of an element is completely user defined,
there is no computation done by the editor. Thus, each
user of the editor could save its own interpretation of
the model. Still, if a model element is very important,
it is very likely that it is on a high abstraction layer, i.e.
the model elements appear on the abstraction layers
depending on their importance.

Fig. 9 Complete Variability Model on lowest layer

On the highest abstraction layer, the most important
model elements can be found. This can result in a dia-
gram with lots of empty spaces between the model
elements. Fig. 9 shows an example for a model. For
illustration purposes, it is kept simple. As seen at the
bottom, each layer can be renamed and automatically
displays the total number of elements on it. In order to
reduce empty space in a variability model, each ab-
straction layer documents the spatial position of the
model individually. Thereby, it is possible to position a
model element in different places for different abstrac-
tion layers. This allows for repositioning the model
elements and helps reducing the size of the variability
model at each abstraction layer.

Fig. 10 Focus on two variation points

Fig. 10 shows an example for this. A new layer for
the variability model in Fig. 9 was created to focus
only on the variation points vp1 and vp2 and their vari-
ants.

This functionality allows for the definition of ab-
straction layers with totally different shapes. A layer’s
change would result in jumping model elements and
would hinder the understandability of the new selected
layer. To ease a layer change, the mountain view im-
plements a floating mechanism which moves each vis-
ible element gently to its new position. Thereby, the

engineer can follow visually the abstraction layer
change and the new position of elements.

The mountain view idea addresses challenges C1 –
C3 as follows:
– Challenge C1 is addressed by the fact that a large

and complex variability model can be visualized in
different abstraction levels. The creation process
benefits from the mountain view since additional
model elements can be defined in the context of a
single abstraction layer.

– Challenges C2 and C3 are addressed since the
abstraction layer can be used to define and visual-
ize relationships in a reduced variability model.

5.1.2 Lasso View for Variability Models
In large and complex variability models related el-

ements may reside outside the currently visible area.
This especially hinders the understandability of rela-
tionships between visible and invisible model elements
(e.g. a constraint relation between two variants).

The idea of the lasso view is to bring the related el-
ements into focus of the engineer. This is accom-
plished by introducing context information into the
diagram. The name of this view reflects the idea of
fetching the related elements of a selected element and
pulling them directly towards the selected element un-
til they reside at the border of the viewable area.

Fig. 11 Using the lasso view

Fig. 11 illustrates the use of the lasso view. By se-
lecting the variant on vp1, the target variant of the re-
quires relationship is pulled from the not-visible area
of the editor to the border of the editor window and
highlighted by a bold border.

Using this technique one can identify all elements
affected no matter where they are located within the
variability model. The engineer can now click on any
element on the border and is directly transferred to the
according element at its original position. Automatical-
ly all links of the new element are displayed. This way,
the engineer could just jump back to where he came
from or continue within the diagram.

The lasso view idea addresses challenges C1 and
C3 as follows:
– Challenge C1 is addressed since the lasso view

can be used to navigate through a large and com-
plex variability model.

– Challenge C3 is addressed since the lasso view
allows the visualization of all elements that are re-
lated to a particular model element by moving
them into the visible are of the model editor.

5.1.3 Coloring Mechanism for Constraints
For the visualization of effects of constraints in

large and complex variability models (see Challenge
C4), the variability modeling editor provides a coloring
mechanism. If the engineer, for example, selects a set
of variants the editor evaluates the variability depend-
encies and the constraints and gives feedback to the
engineering by highlighting the model elements with
different colors. Fig. 12 shows an example for this
coloring.

Fig. 12. Example for the Coloring Mechanism

In this example, the variant v1 is selected. The edi-
tor evaluates all dependencies beginning from this var-
iant. The variants, that are part of the product, respec-
tively the variation points that were regarded, are high-
lighted in light green (e.g. v1, vp1, v3, v4). For illustra-
tion purposes, we used white in the figure. Variants or
variation points that are not part of the product, or re-
spectively not regarded, are highlighted in light red
(e.g. v2, here light gray). In Fig. 12, the algorithm de-
tects an error: if v1 is bound, the variation point vp1
has to be regarded. This results in a selection of variant
v3, because it is a mandatory variant on vp1. Variant
v3 requires the variant v4 that has a variability depend-
ency to the variation point vp2, but vp2 has a constraint
dependency to v1, which was selected to be part of the
product. That means, there is a problem in the variabil-
ity model. Therefore, the variation point vp2 is high-
lighted in dark red (here dark grey), because the de-
pendencies on vp2 cannot be validly solved.

5.2. Modeling Product Line Models

The orthogonal variability modeling approach re-
quires that the product line models are documented
independently from the variability model and that the

impact of variability on a particular product line model
element is document by relationships between product
line model elements and the variability model. Thus,
the creation and visualization of these relationships is
the central challenge for the visual modeling of soft-
ware product lines. In order to improve the visualiza-
tion of the relationships, we have developed a coloring
mechanism within the particular models (Section
5.2.1) and a dedicated connection view for the rela-
tionships (Section 5.2.2).

5.2.1 Coloring Mechanism for Artifact Models
In the tool, several views on the models can be

open in the same time. For visualizing relationships
between different models, our tool implements color-
ing mechanism which is based on selected model ele-
ments. When variants are selected in the variability
model, the product line model elements that are related
to the selected variants are highlighted to visualize the
relationship.

Fig. 13: Visualization of common and variable model
elements

Fig. 13 shows a screenshot of our coloring mecha-
nism. Two views are opened: the variability model on
the left and an activity diagram as product line model
on the right hand side. Variant 2 is selected by the us-
er. The activity diagram shows that one transition is
common (black), two transitions (dashed) are related to
the selected Variant 2 and one transition (grey) is re-
lated to a variant that is not selected.

The coloring mechanism is also able to visualize
the variants related to a product line model element.
When model elements are selected, their related vari-
ants are highlighted in the variability model.

Fig. 14: Visualization of variants related to a model ele-
ment

5.2.2 Connection View for Variability
The idea of the connection view is to provide an

independent tree-like view on the relationship between
the variability model and the various product line
models.

Initially, the connection view is an empty list with-
out any content. When an element is dropped from the
editor window into the connection view, it becomes
the root element of the view. Depending on the
dropped element, the connection view behaves as fol-
lows:
– When a variant is dropped into the connection

view, the view shows all product line model ele-
ments which are related to the selected variant as
child elements.

– When an artifact model element is dropped into
the connection view, the view shows the variants
that are related to the selected model element as
child elements.

Since the connection view follows the tree para-
digm for the visualization, the elements related to a
child element can also be visualized by opening them.

Fig. 15 illustrates the visualization capabilities of
the connection view by an example. First, Variant 2
was dragged and dropped into the view. By expanding
the entry of the variant, all related artifacts are shown,
e.g. variable transitions as shown in Fig. 15.

Fig. 15: Visualization and definition of variability rela-
tions in the connection view.

The connection view serves not only as a visualiza-
tion mechanism. The connection view also supports
the definition of relationships between the variability
model and product line model elements within the

whole tree by dragging them on the variant in the con-
nection view.

Fig. 15 illustrates this: to add a new variation de-
pendency, e.g. from the transition from Activity 2 to
the final node to v2, the transition has to be dragged
and dropped onto the Variant 2 in the connection view
as illustrated in Fig. 15

The connection view addresses challenges C5-C7
as follows:

– Challenge C5 is addressed by the fact that the
connection view can be used as independent view
on the variability relation. The tree-like visualiza-
tion approach furthermore enables to browse
through the relationships between the variability
model and the various product line model ele-
ments

– Challenge C6 is addressed by the connection view
since it visualizes information about the variants
that are related to a product line model element.

– Challenge C7 is addressed by the fact that the
connection view also enables the definition of re-
lationships at various levels of the relationship
tree.

5.3. Conclusion

In this chapter we have presented solution ideas for
the visual modeling of software product lines. The
mountain view idea and the lasso view idea are to the
best of our knowledge novel ideas. However, the idea
of using colored model elements or the tree-like ap-
proach of the connection view itself is not a novel idea
in product line engineering visualization research (see
Section 3).

Nevertheless, we believe that the integration of the-
se approaches with our presented visualization ap-
proaches for variability modeling (mountain view and
lasso view) will greatly improve the visual modeling in
product line engineering. In the following section, we
will discuss possible strategies for the empirical evalu-
ation of our claim.

6. Empirical Evaluation Strategy

Visual notations and modeling approaches in com-
puter science are intended to support human beings
involved in software engineering [6]. In our case, the
goal of the visual modeling approach is to support hu-
man beings involved in product line engineering. The
central measurement of a visual modeling approach is
the cognitive effectiveness [13] which can be defined
as the processing speed, ease and accuracy of the hu-
man mind [10]. In the following, we will present two
possible experimental settings that measure the cogni-
tive effectiveness of our presented solution ideas.

6.1. Task-oriented Experiments

We plan to define a series of experiments in which
the participants perform task related to product line
engineering and variability modeling with our tool
prototype. We distinguish three kinds of task: creation-
al task, modification tasks and analytic task.

In a creational task, the participant has to create a
new model. Examples for such a creation task are:
– The creation of a variability model for a product

line including the definition of new variation
points, variants, and constraints

– The creation of product line models including the
definition of common and variable parts of these
models by defining variability relationships be-
tween the variability model and elements of the
product line model

In a modification task, the participant has to modify
a given model based on a given list of modifications
(e.g. specified in natural language). Examples for such
a modification task are:
– The modification of existing variability models

including the redefinition of constraints, or the re-
naming of variation points or variants

– The modification of existing product line models
including the definition of new common are varia-
ble model elements, or the modification of a the
variability quality of a model element, i.e., a
common element becomes variable and vice versa.

In an analytic task, the participant has to analyze a
given variability model and/or a given product line
model. Examples for such an analytic task are:
– The participant has to check if a set of given vari-

ants can be selected together or not.
– The participant has to check for contradictions in

the variability model, e.g. two variants require
each other and exclude each other at the same
time.

– The participant has to check if variable elements
of a product line model can be selected together or
not.

These tasks will be performed several times with
different participants (e.g. student, researchers, engi-
neers from industry). Each participant group is split in
two subgroups. They are using two different versions
of our tool prototype. Version a) contains the variabil-
ity modeling editor including the previously described
extensions. Version b) contains the editor without the
extension.

We plan to measure the time that was necessary to
complete each task. We expect to show that our exten-
sions will reduce the execution time for each task
thereby increase the speed of the engineer.

After the task execution, we plan to analyze the
quality of task results, especially the quality of the ana-

lytic task. We expect to show that our extensions im-
prove the quality of the task results.

Finally, we plan to compare the time and quality
results for each task and expect to show that our exten-
sion improve the speed and the quality at the same
time.

6.2. Eye Tracking Studies

Eye tracking technologies allow for the measure-
ment of human eye movement, e.g. during the process
of reading a text or a diagram. The result of an eye
tracking study is typically the path of the human eye
movement and the time spent for watching a certain
part of a text or a diagram. This information can be
used to draw conclusions about the accuracy and ease
of a visual task.

We plan to evaluate our solution ideas for visual
variability modeling, in particular the mountain view
and the lasso view with eye tracking studies based on
various tasks related to the variability models. These
tasks can be reused from the experiments presented in
Section 6.1. Similar to the experiments presented in
Section 6.1, these tasks will be executed with both
versions of our tool (with and without extensions). The
execution of each task is document with an eye track-
ing tool. Additionally, the mouse movements and the
keyboard interaction will be measured.

We expect to show that our extensions will signifi-
cantly reduce the eye movement of the participants and
thereby significantly reduce the cognitive complexity
in terms of accuracy and ease for the creation and
modification of large variability models.

We further plan to perform similar forms of eye
tracking studies to evaluate the cognitive complexity
for the other task.

7. Summary and Outlook

We have presented eight challenges for the visual
modeling of complex product line models based on the
orthogonal variability modeling approach. In order to
address these challenges, we have presented different
solution ideas that support the visual modeling of
product lines and illustrated their implementation in
our prototypical tool environment.

We consider our solution ideas as an important step
towards an effective visual modeling in product line
engineering. Our first experiences from the application
of the tool prototype indicated that our solution ideas
greatly improve the visual modeling of product lines.
In our future work, we plan to examine the benefits of
our solution ideas in more detail and plan to conduct a
series of experiments and case studies. A description
of our empirical evaluation strategy is also part of the
paper.

8. References
[1] Bachmann, F.; Goedicke, M.; Leite, J.; Pohl, K.;

Ramesh, B.; Vilbig, A.: Managing Variability in Prod-
uct Family Development. In: Proceedings of 5th Intl.
Workshop on Product Family Engineering (PFE-5),
2003.

[2] Bosch, J.: Software Variability Management. In: Pro-
ceedings of the 26th International Conference on Soft-
ware Engineering, pp. 720-721, 2004.

[3] Classen, A.; Heymans, P.; Schobbens, P-Y.; Legay, A.
and Raskin, J-F. Model Checking Lots of Systems:
Efficient Verification of Temporal Properties in Soft-
ware Product Lines (to appear). In 32nd International
Conference on Software Engineering, ICSE 2010,
2010.

[4] Czarnecki, K.; Pietroszek, K.: Verifying feature-based
model templates against well-formedness OCL con-
straints. In Proceedings of the Conference on Genera-
tive Programming and Component Engineering, pp.
211-220, 2006.

[5] Deelstra, S., Sinnema, M., Bosch, J.: A Product Deriva-
tion Framework for Software Product Families. In: van
der Linden, Frank (ed.): Proceedings of the 5th Interna-
tional Workshop on Product Family Engineering, Siena,
Italy, LNCS, Vol. 3014. Springer, Heidelberg, pp. 473-
484, 2003.

[6] Harel, D.: On Visual Formalisms. Communications of
the ACM, Vol. 31, No. 5, pp. 514-530, 1988.

[7] Heidenreich F., Savga I., Wende C.: On Controlled
Visualisations in Software Product Line Engineering. In
Proc. SPLC Workshop on Visualization in Software
Product Line Engineering (ViSPLE), 2008.

[8] http://www.visuresolutions.com/

[9] Kästner C., Trujillo S., Apel S.: Visualizing Software
Product Line Variabilities in Source Code. In Proc.
SPLC Workshop on Visualization in Software Product
Line Engineering (ViSPLE), 2008.

[10]Larkin, J.; Simon, H.A.: Why a Diagram Is (Some-
times) Worth Ten Thousand Words. Cognitive Science,
Vol. 11, No. 1, 1987, pp. 65-100.

[11] Lauenroth, K.; Pohl, K.; Töhning, S.: Model Checking
of Domain Artifacts in Product Line Engineering. In:
Proc. of the ACM/IEEE Intl. Conference on Automated
Software Engineering, pp. 269-280, 2009.

[12]Metzger, A.; Pohl, K.: Variability Management in
Software Product Line Engineering. In: Knight, J.;
Emmerich, W.; Rothermel, G. (Eds.): Proceedings of
the 29th Intl. Conference on Software Engineering
(ICSE 2007), Minneapolis, 20-26 Mai 2007, Compan-
ion Volume, ACM, pp. 186–187, 2007.

[13] Moody, D.: The Physics of Notations: Toward a Scien-
tific Basis for Constructing Visual Notations in Soft-
ware Engineering. IEEE Transactions on Software En-
gineering, Vol. 35, No. 6, pp. 756-779, 2009.

[14]Pohl, K.; Böckle, G.; van der Linden, F.: Software
Product Line Engineering – Foundations, Principles,
and Techniques. Springer, Heidelberg, 2005.

[15]Sinnema, M.; Deelstra, S.; Nijhuis, J.; Bosch, J.: Man-
aging Variability in Software Product Families. In:
Proceedings of the 2nd Workshop on Software Varia-
bility Management, 2004.

[16]Stoiber R., Reinhard T., Glinz M.: Visualization Sup-
port for Software Product Line Modeling. In: Proceed-
ings of the SPLC Workshop on Visualization in Soft-
ware Product Line Engineering (ViSPLE), 2008.

[17]Variant Management with pure::variants, Pure-systems
GmbH , Technical White Paper, 2006, URL:
http://www.pure-systems.com/fileadmin/downloads/pv-
whitepaper-en-04.pdf

